GENERAL INFORMATION

- Historical Statement ... 4
- MISSION, PURPOSE AND GOALS OF THE UNIVERSITY ... 4
 - Mission Statement .. 4
 - Vision .. 5
- AGGIE PRIDE COMPACT .. 6
- STUDENT CONDUCT ... 7
- ADMINISTRATION, North Carolina A&T State University ... 7
- DEANS OF COLLEGES AND SCHOOLS ... 8
- COLLEGES, SCHOOLS, AND DIVISIONS OF NORTH CAROLINA 8
- ACCREDITATION AND INSTITUTIONAL MEMBERSHIPS .. 8
- ACADEMIC CALENDAR ... 10
- THE SCHOOL OF GRADUATE STUDIES ... 13
- GRADUATE ADMISSION .. 13
- REGISTRATION AND RECORDS .. 19
- TUITION AND FEES ... 26
- IMMUNIZATION FOR GRADUATE STUDENTS ... 32
- INTERNATIONAL STUDENTS AND SCHOLARS OFFICE .. 34
- GRADUATE PROGRAMS .. 35
- MAJOR RESEARCH CENTERS AND INSTITUTES .. 45
- THE DIVISION OF INFORMATION TECHNOLOGY AND TELECOMMUNICATIONS ... 47
- MAJOR FIELDS OF INSTRUCTION .. 50
 - Agribusiness, Applied Economics ... 53
 - Animal Sciences .. 63
 - Biology .. 66
 - Business Education ... 74
 - Chemical and Mechanical Engineering .. 77
 - Chemistry ... 96
 - Civil and Environmental Engineering .. 105
 - Computational Science and Engineering M.S. Program ... 116
 - Computer Science ... 122
 - Construction Management and Occupational Safety & Health 130
 - Curriculum and Instruction ... 138
 - Electrical and Computer Engineering .. 155
 - Electronics, Computer, and Information Technology .. 175
 - Energy and Environmental Ph.D. Program ... 190
 - English .. 196
 - Graphic Communication Systems and Technological Studies 214
 - Human Performance and Leisure Studies .. 231
 - History ... 236
 - Human Development and Services .. 242
 - Human Resources Management .. 259
 - Industrial and Systems Engineering .. 264
 - Leadership Studies Program ... 273
 - Management Information Systems .. 281
 - Mathematics .. 286
GENERAL INFORMATION

North Carolina Agricultural and Technical State University

Historical Statement

Today, one of the nation’s leading Historically Black Universities and Colleges (HBCU), North Carolina Agricultural and Technical State University is classified as a Carnegie doctoral/research intensive university that is recognized as the top producing university for African American engineers and technologists. The University’s programs have numerous accreditations including the first nationally accredited AACSB accounting program in the nation among HBCUs. The university’s history as one of only eighteen HBCUs 1890 land-grant universities is well reflected in agriculture, animal science, environmental science, engineering, and technology programs, and a growing student enrollment is a further reflection of the demands for the North Carolina A&T’s programs in education, nursing, and arts and sciences. North Carolina A&T also has a rich civil rights legacy, and its students, especially the Greensboro Four who are credited with beginning the movement, played a prominent role in the sit-ins of the 1960s.

Today’s university has changed a great deal from the Agricultural and Mechanical College for the “Colored Race” established by an act of the General Assembly of North Carolina ratified on March 9, 1891. The College actually began operation during the school year of 1890-91, before the passage of the state law creating it.

The scope of degree programs has been expanded to meet new demands. The first graduate degree was approved when the General Assembly authorized the institution to grant the Master of Science degree in education and certain other fields in 1939. The first master’s degree was awarded in 1941.

In 1957 the General Assembly repealed previous acts describing the purpose of the College and redefined its purpose ”to teach the Agricultural and Technical Arts and Sciences” and added a heavy emphasis to the strengthening its efforts to train “teachers, supervisors, and administrators for the public schools of the State” especially preparing them to earn the Master’s degree.

North Carolina’s General Assembly voted to elevate the College to the status of a Regional University effective July 1, 1967. On October 30, 1971, the General Assembly ratified an Act to consolidate the Institutions of Higher Learning in North Carolina. Under the provisions of this Act, North Carolina Agricultural and Technical State University became a constituent institution of The University of North Carolina effective July 1, 1972.

Nine presidents/chancellors have served the Institution since it was founded in 1891. They are as follows: Dr. J. O. Crosby (1892-1896), Dr. James B. Dudley (1896-1925), Dr. F.D. Bluford (1925-1955), Dr. Warmoth T. Gibbs (1956-1960), Dr. Samuel DeWitt Proctor (1960-1964), Dr. Lewis C. Dowdy (1964-1980), Dr. Cleon F. Thompson (Interim Chancellor – 1980-1981), Dr. Edward B. Fort (1981-1999), Dr. James C. Renick (1999-2006), Dr. Lloyd V. Hackley (Interim Chancellor – 2006-2007), Dr. Stanley F. Battle (2007-)

MISSION, PURPOSE AND GOALS OF THE UNIVERSITY

Mission Statement

North Carolina Agricultural and Technical State University is a public, doctoral/research intensive, land-grant university committed to fulfilling its fundamental purposes through exemplary undergraduate and graduate instruction, scholarly and creative research, and effective public service. The university offers degree programs at the baccalaureate, master’s and doctoral levels with emphasis on agriculture, engineering, science, technology, literature and other academic areas. As one of North Carolina’s three engineering colleges, the university offers Ph.D. programs in engineering. Basic and applied research is conducted by faculty in university centers of excellence, in inter-institutional relationships, and through significant involvement with several public and private agencies. The university also conducts major research through engineering, transportation, and its extension programs in agriculture.
North Carolina Agricultural and Technical State University aspires to be the premier interdisciplinary-centered university in America that builds on its comparative advantages in engineering, technology, and business; a strong civil rights legacy; and status as an 1890 land-grant institution. The challenges of preparing our students to meet the complex needs of the global society necessitate that these exemplary and relevant educational experiences are inherently global in nature and interdisciplinary in focus. The commitment to excellence and the unique NC A&T SU legacy of nurturing the individual student remain strong.

The University’s evolution toward interdisciplinary responds to societal and intellectual issues that require new solutions. Cross-functional teams with expertise from a variety of disciplines and perspectives are the best hope for the solution of complex modern challenges. As new problem-solving methods are needed, new disciplines are created at the intersection of old ones. Students are enthusiastic about courses that link learning to contemporary issues. An interdisciplinary education provides students with not only essential knowledge, but also connections across the disciplines, and finally, the ability to apply knowledge to life beyond the campus.

Interdisciplinary studies build upon disciplinary excellence while inspiring new possibilities beyond the strengths of traditional fields of study. This model provides a focus for curriculum innovation, fosters communication across disciplines, and promotes partnerships with public and private entities. This university creates a learning environment in which opportunities to build solutions are based on expertise in more than one discipline. Teaching focuses more on the ability to organize, assess, apply, and create interdisciplinary knowledge rather than the transmission of existing knowledge to students.

The teaching and learning process involves not only a commitment to knowledge and research, but also appreciates the influences of diverse thoughts, values, processes, resources, and structures as it seeks to organize and plan lifelong learning experiences. High expectations are supported by an infrastructure that facilitates the opportunity for constituents within the University to achieve and excel individually and collectively. Opportunities for learning are enhanced by varied methods of instruction, 24-hour availability, and through partnerships that are collaborative and cooperative.

To be productive citizens of the 21st century, our students must be globally informed. Thus, current efforts to globalize the curriculum will continue. In addition, students will have the opportunity to enhance their undergraduate education by taking part in overseas study, internships, or service learning experiences. Some may even earn a certificate in international studies. Likewise, international partnerships enhance interdisciplinary efforts and provide new opportunities for faculty and students to participate in and contribute to global change. The University exists for a society that is committed to research, knowledge and service to humankind. The physical space for learning is not to be limited to a specific site, but deliverable in a variety of locations with a multiplicity of available resources.

The interdisciplinary-centered university envisions its role to serve the needs of individuals and groups who seek continuous opportunities for intellectual stimulation and growth. Utilizing the traditional disciplines and technological resources, this University fosters excellence in communication, enhances critical thinking, conducts research, and transmits new knowledge to a community that seeks to improve the quality of life for all in the 21st century.

To realize the promise of the interdisciplinary-centered university, North Carolina A&T must initiate and nurture strategic partnerships, while concurrently enhancing and diversifying its resource base.

Vision

Building upon a solid foundation in academic programs, the faculty, staff and students endorsed the FUTURES strategic vision toward an interdisciplinary university. The adoption of the vision statement and a set of five goals are aimed at enhancing the culture of high standards in all programs and facilities and for all stakeholders --- students, faculty, staff, alumni, community, public and private sector friends of the University.

North Carolina Agricultural and Technical State University is a learner-centered community that develops and preserves intellectual capital through interdisciplinary learning, discovery, engagement, and operational excellence.

Goal One: Establish and ensure an interdisciplinary focus for North Carolina A&T that mandates overall high quality, continued competitiveness, and effective involvement of global strategic partners in marketing and delivery of programs and operations.
Goal Two: Deliver visionary and distinctive interdisciplinary learning, discovery, and engagement that include collaborations and partnerships as part of the learning experience.

Goal Three: Foster a responsive learning environment that utilizes an efficiently integrated administrative support system for high quality programs, research and collegial interactions, and effectively disseminates consistent information to University stakeholders.

Goal Four: Provides superior: readily available student services and programs that recognize and respond to diverse student needs.

Goal Five: Enhance and diversify the University’s resource base through effective fund-raising, entrepreneurial initiatives, enhanced facilities, and sponsored research programs.

NONDISCRIMINATION POLICY AND INTEGRATION STATEMENT

NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY is committed to equality of educational opportunity and does not discriminate against applicants, students, or employees based on race, color, national origin, religion, gender, age, or disability. Moreover, NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY is open to people of all races and actively seeks to promote racial integration by recruiting and enrolling a larger number of white students.

NORTH CAROLINA AGRICULTURAL AND TECHNICAL STATE UNIVERSITY supports the protections available to members of its community under all applicable Federal laws, including Titles VI and VII of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, Sections 799A and 845 of the Public Health Service Act, the Equal Pay and Age Discrimination Acts, the Rehabilitation Act of 1973, and Executive Order 11246.

AGGIE PRIDE COMPACT

Achieving Great Goals In Everything – Producing Renowned Individuals Dedicated To Excellence

The essence of Aggie Pride is manifested in standards depicting what it truly means to be a responsible member of The North Carolina Agricultural and Technical State University Family. These standards provide the impetus and inspiration, which motivate students, faculty, staff, administrators, and trustees alike in their perpetual commitment to excellence. North Carolina Agricultural and Technical State University has a unique legacy of nurturing individual students to realize their fullest potential.

North Carolina Agricultural and Technical State University is a learner-centered community that develops and preserves intellectual capital through interdisciplinary learning, discovery, engagement, and operational excellence. As members of the university community, all stakeholders share a pervasive sense of trust, pride, and allegiance in ensuring the preeminent status of North Carolina Agricultural and Technical State University in a global society. The following standards define the essence of Aggie Pride:

Aggie Pride is consistently communicating and behaving in a manner that displays integrity, honesty, sound character, and virtuous ethics. (Values)

Aggie Pride is expecting and achieving success and setting high standards in all personal and professional ventures. (Achievement)

Aggie Pride is taking a personal stand to positively affect the continuous growth, development and enhancement of the University at large. (Commitment)

Aggie Pride is accepting and demonstrating a steadfast commitment to learning by taking responsibility through personal and professional development. (Self-determination)
Aggie Pride is striving to significantly influence the development of individuals of all ages within and beyond our community to become lifelong learners. (Lifelong Learning)

Aggie Pride is exhibiting a positive and willing attitude to unselfishly serve and to pledge ones talents and gifts for the betterment of North Carolina Agricultural and Technical State University and the larger world community. (Service)

Aggie Pride is contributing to the establishment and maintenance of a safe, clean, and aesthetically appealing campus with a favorable ecosystem. (Building Community)

Aggie Pride is exhibiting a relentless desire and commitment to treat all individuals with a high level of appreciation and respect and to expect the same in return. (Respect)

Aggie Pride is effectively representing the University by utilizing personal knowledge, skills, and resources. (Confidence)

Aggie Pride builds on the past, maintains the present, and accepts the challenges of the future while providing our personal financial resources to preserve our legacy and ensure our future. (Legacy)

Therefore, as a member of the North Carolina Agricultural and Technical State University family, I unconditionally accept the obligation entrusted to me to live my life according to the standards set forth in this Compact. By my words and actions, I commit to Aggie Pride and the pursuit of excellence for myself and for my University.

STUDENT CONDUCT

Students enrolled at North Carolina Agricultural and Technical State University are expected to conduct themselves properly at all times. They are expected to observe standards of behavior and integrity that will reflect favorably upon themselves, their families, and the University. They are further expected to abide by the laws of the city, state, and nation, and by all rules and regulations of the University.

Accordingly, any student who demonstrates an unwillingness to obey the rules and regulations that are prescribed or that may be prescribed to govern the student body will be placed on probation, suspended or expelled from the institution.

A student may forfeit the privilege of working for the University when, for any reason, he or she is placed on probation because of misconduct.

ADMINISTRATION, North Carolina A&T State University

Stanley F. Battle, Chancellor
Janice G. Brewington, Provost and Vice Chancellor for Academic Affairs
Willie T. Ellis, Jr., Vice Chancellor for Business and Finance
Sullivan A. Welborne, Vice Chancellor for Student Affairs
Mark Kiel, Vice Chancellor for Development and University Relations
Narayanaswamy Radhakrishnan, Vice Chancellor for Research and Economic Development
Vijay K. Verma, Vice Chancellor for Information Technology and Telecommunications/CIO
Wendell Phillips, Special Assistant to the Chancellor for Community Outreach & Special Projects
Henry Nichols, Special Assistant to the Chancellor for Finance, Contracts & Athletics
William Clay, Special Assistant to the Chancellor for Development
Dorothy Browne, Special Assistant to the Chancellor for Research & Public Health
Camille Kluttz-Leach, Special Assistant to the Chancellor for Legal Affairs
DEANS OF COLLEGES AND SCHOOLS
Alton Thompson, Dean, School of Agriculture and Environmental Sciences
Michael A. Plater, Dean, College of Arts and Sciences
Quiester Craig, Dean, School of Business and Economics
Deborah Calloway, Interim Dean, School of Education
Joseph Monroe, Dean, College of Engineering
William J. Craft, Interim Dean, School of Graduate Studies
Patricia Price-Lea, Dean, School of Nursing
Benjamin O. Uwakweh, Dean, School of Technology

COLLEGES, SCHOOLS, AND DIVISIONS OF NORTH CAROLINA
AGRICULTURAL AND TECHNICAL STATE UNIVERSITY

North Carolina Agricultural and Technical State University includes the following colleges, schools, and divisions: The School of Agriculture and Environmental Sciences, The College of Arts and Sciences, The School of Business and Economics, The School of Education, The School of Technology, The College of Engineering, The School of Nursing, School of Graduate Studies, and The Division of Continuing Education and Summer School.

ACCREDITATION AND INSTITUTIONAL MEMBERSHIPS

North Carolina Agricultural and Technical State University is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools (1866 Southern Lane, Decatur, Georgia 30033-4097: Telephone number 404-679-4501) to award bachelor’s, master’s, and doctoral degrees.

A listing of programs and their accrediting agencies follows:

The program of Industrial Technology is accredited by the National Association of Industrial Technology;
The Media Program is accredited by the Association of Educational Communications and Technology;
The undergraduate programs in agricultural, architectural, electrical, industrial, and mechanical engineering, leading to the B.S. degree, are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology;
The Teacher Education Programs are accredited by the National Council for Accreditation of Teacher Education;
The Department of Chemistry is accredited by the American Chemical Society;
The School of Business and Economics is accredited by the American Assembly of Collegiate Schools of Business;
The undergraduate business programs of the School of Business and Economics are accredited by AACSB International – The Association to Advance Collegiate Schools of Business;
The Social Work Program of the Department of Sociology and Social Work is accredited by the Council on Social Work Education;

Below is a listing of professional organizations that the University is a member:
American Association of Colleges for Teacher Education
American Association of Collegiate Registrars and Admission Officers
National Association of State Universities and Land Grant Colleges
American Association of Colleges of Nursing
American College Public Relations Association
American Council for Construction Education
Associated Schools of Construction
American Council on Education
American Public Welfare Association
American Library Association
Association of American Colleges
Association of Collegiate Deans and Registrars
Graduates of the University are eligible for membership in the American Association of University Women.
ACADEMIC CALENDAR

NOTE: This calendar is subject to periodic revision. Please check with the University Registrar to determine if changes have been made, or visit our website at www.ncat.edu.

North Carolina A&T State University

2007-2008 Academic Calendar

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 3</td>
<td>Friday</td>
<td>Tuition, Fees, Room And Board Due Into The Treasurer's Office For The Fall 2007 Semester</td>
</tr>
<tr>
<td>August 15</td>
<td>Wednesday</td>
<td>Faculty Institute - Faculty Report</td>
</tr>
<tr>
<td>August 16</td>
<td>Thursday</td>
<td>Graduate Research and Teaching Assistant Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residence Halls Open For New Students Who Attended June 2007 New Student Orientation (9am - 3pm)</td>
</tr>
<tr>
<td>August 17</td>
<td>Friday</td>
<td>Graduate Student Orientation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Registration For Continuing Students</td>
</tr>
<tr>
<td>August 18</td>
<td>Saturday</td>
<td>Residence Halls Open For Continuing Students (9am - 3pm)</td>
</tr>
<tr>
<td>August 18-19</td>
<td>Saturday-Sunday</td>
<td>Welcome Program For New Students And Transfer Students</td>
</tr>
<tr>
<td>August 20</td>
<td>Monday</td>
<td>CLASSES BEGIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LATE REGISTRATION BEGINS ($50.00 Late Fee)</td>
</tr>
<tr>
<td>August 20</td>
<td>Monday</td>
<td>LAST DAY TO ADD OR AUDIT A COURSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY TO DROP AND RECEIVE FINANCIAL CREDIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LATE REGISTRATION ENDS (Includes Tuition Waivers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY TO RECEIVE A BOOK ALLOWANCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY TO APPLY FOR FALL 2007 GRADUATION (GRADUATE STUDENTS ONLY)</td>
</tr>
<tr>
<td>September 3</td>
<td>Monday</td>
<td>UNIVERSITY HOLIDAY (Labor Day)</td>
</tr>
<tr>
<td>September 24</td>
<td>Monday</td>
<td>Deadline To Remove Incomplete(s) Received Spring and Summer 2007</td>
</tr>
<tr>
<td>September 28</td>
<td>Friday</td>
<td>Deadline To Apply For Certificate In Entrepreneurship</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deadline To Apply For Certificate In Waste Management</td>
</tr>
<tr>
<td>October 8-9</td>
<td>Monday-Tuesday</td>
<td>FALL BREAK</td>
</tr>
<tr>
<td>October 15-19</td>
<td>Monday-Friday</td>
<td>Final Comprehensive Exam Week (Graduate Students)</td>
</tr>
<tr>
<td>October 17</td>
<td>Wednesday</td>
<td>Mid-Term Grades Due</td>
</tr>
<tr>
<td>October 25</td>
<td>Thursday</td>
<td>Founder’s Day (Classes Suspended 10am - 12 noon)</td>
</tr>
<tr>
<td>October 27</td>
<td>Saturday</td>
<td>HOMECOMING</td>
</tr>
<tr>
<td>November 2</td>
<td>Friday</td>
<td>Last Day To Withdraw From An Individual Course Without A Grade Evaluation</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Important Dates</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Monday</td>
<td>Last Day To Defend Thesis/Dissertation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Defended And Approved Thesis/Dissertation Due In Graduate School Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advisement And Registration For Spring And Summer 2008</td>
</tr>
<tr>
<td>9</td>
<td>Friday</td>
<td>Last Day To Withdraw From The University Without A Grade Evaluation</td>
</tr>
<tr>
<td>21</td>
<td>Wednesday</td>
<td>THANKSGIVING HOLIDAY BEGINS 7AM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>THANKSGIVING HOLIDAY ENDS 7AM</td>
</tr>
<tr>
<td>26</td>
<td>Monday</td>
<td>Approved Printed Thesis/Dissertation Copies For Binding Due In The Graduate School Office</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Thursday</td>
<td>CLASSES END</td>
</tr>
<tr>
<td>7</td>
<td>Friday</td>
<td>READING DAY</td>
</tr>
<tr>
<td>8-14</td>
<td>Saturday-Friday</td>
<td>FINAL EXAM WEEK</td>
</tr>
<tr>
<td>14</td>
<td>Friday</td>
<td>Residence Halls lose For NON-GRADUATING Students At 12 Noon</td>
</tr>
<tr>
<td>15</td>
<td>Saturday</td>
<td>COMMENCEMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residence Halls Close For Graduating Students At 5pm</td>
</tr>
<tr>
<td>Spring Semester 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Thursday</td>
<td>Tuition, Fees, Room and Board Due Into The Treasurer's Office For The Spring 2008 Semester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residence Halls Open For New Students (9am - 3pm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Registration For Continuing Students</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Faculty Report</td>
</tr>
<tr>
<td>3-4</td>
<td>Thursday-Friday</td>
<td>Orientation, Advisement And Registration For New Students</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graduate Research And Teaching Assistant Training</td>
</tr>
<tr>
<td>4</td>
<td>Friday</td>
<td>Graduate Student Orientation</td>
</tr>
<tr>
<td>5</td>
<td>Saturday</td>
<td>Residence Halls Open For Continuing Students (9am - 3pm)</td>
</tr>
<tr>
<td>7</td>
<td>Monday</td>
<td>CLASSES BEGIN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LATE REGISTRATION BEGINS ($50.00 Late Fee)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY FOR GRADUATE STUDENTS TO APPLY FOR SPRING GRADUATION</td>
</tr>
<tr>
<td>11</td>
<td>Friday</td>
<td>LAST DAY TO ADD OR AUDIT A COURSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY TO DROP AND RECEIVE FINANCIAL CREDIT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LATE REGISTRATION ENDS (Includes Tuition Waivers)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY TO RECEIVE BOOK ALLOWANCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LAST DAY FOR UNDERGRADUATE STUDENTS TO APPLY FOR SPRING GRADUATION</td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Event Description</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>January 21</td>
<td>Monday</td>
<td>UNIVERSITY HOLIDAY (Martin Luther King, Jr.)</td>
</tr>
<tr>
<td>January 25</td>
<td>Friday</td>
<td>Ronald E. McNair Memorial Day</td>
</tr>
<tr>
<td>February 18</td>
<td>Monday</td>
<td>Deadline To Remove Incomplete(s) Received Fall 2007</td>
</tr>
<tr>
<td>February 22</td>
<td>Friday</td>
<td>Deadline To Apply For Certificate In Entrepreneurship</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Deadline To Apply For Certificate In Waste Management</td>
</tr>
<tr>
<td>March 1</td>
<td>Saturday</td>
<td>Residence Halls Close at 1:00 PM</td>
</tr>
<tr>
<td>March 3-7</td>
<td>Monday-Friday</td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>March 8</td>
<td>Saturday</td>
<td>Residence Halls Open 9:00 AM</td>
</tr>
<tr>
<td>March 10-14</td>
<td>Monday-Friday</td>
<td>Final Comprehensive Exam Week (Graduate Students)</td>
</tr>
<tr>
<td>March 20</td>
<td>Thursday</td>
<td>HONOR'S CONVOCATION (Classes Are Suspend From 3 PM to 5 PM)</td>
</tr>
<tr>
<td>March 21</td>
<td>Friday</td>
<td>UNIVERSITY HOLIDAY (Good Friday)</td>
</tr>
<tr>
<td>March 28</td>
<td>Friday</td>
<td>Last Day To Withdraw From An Individual Course Without A Grade Evaluation</td>
</tr>
<tr>
<td>April 4</td>
<td>Friday</td>
<td>Last Day To Withdraw From The University Without A Grade Evaluation</td>
</tr>
<tr>
<td>April 7</td>
<td>Monday</td>
<td>Defended and Approved Thesis/Dissertation Due In Graduate School Office</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADVISEMENT AND REGISTRATION FOR FALL 2008 AND SUMMER SCHOOL</td>
</tr>
<tr>
<td>April 28</td>
<td>Monday</td>
<td>Approved Printed Thesis/Dissertation Copies For Binding Due In Graduate School Office</td>
</tr>
<tr>
<td>April 29</td>
<td>Tuesday</td>
<td>CLASSES END</td>
</tr>
<tr>
<td>April 30</td>
<td>Wednesday</td>
<td>READING DAY</td>
</tr>
<tr>
<td>May 1-7</td>
<td>Thursday-Wednesday</td>
<td>FINAL EXAM WEEK</td>
</tr>
<tr>
<td>May 8</td>
<td>Thursday</td>
<td>Residence Halls Close For NON-GRADUATING Students At 12 Noon</td>
</tr>
<tr>
<td>May 9</td>
<td>Friday</td>
<td>Waste Management Certificate Ceremony</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Grades Due</td>
</tr>
<tr>
<td>May 10</td>
<td>Saturday</td>
<td>COMMENCEMENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residence Halls Close For Graduating Students 5:00 PM</td>
</tr>
</tbody>
</table>
Graduate education at North Carolina Agricultural and Technical State University was authorized by the North Carolina State Legislature in 1939. The authorization provided for training in agriculture, technology, applied sciences, and other approved areas of study. An extension of the graduate program approved by the General Assembly of North Carolina in 1957 provided for enlargement of the curriculum to include teacher education, as well as such other programs of a professional or occupational nature as might be approved by the North Carolina Board of Higher Education.

On July 1, 1967, the Legislature of North Carolina approved regional university status for the institution and renamed it North Carolina Agricultural and Technical State University. The University awarded its first master’s degree in 1941 to Woodland Ellroy Hall. Since that time, nearly 6,700 students have received this coveted degree of advanced studies. A significant number of these graduates have gone on to other universities to achieve the prestigious doctoral degree in their chosen disciplines. In recent years, a number of students who received their master’s degree from A&T remained at A&T to earn a doctoral degree from A&T’s College of Engineering.

The School of Graduate Studies has an integrated and intercultural faculty and student body and beckons students from all over the world. It coordinates and administers advanced course offerings in departments within the School of Agriculture and Environmental Sciences, the College of Arts and Sciences, The School of Business and Economics, the School of Education, the College of Engineering, and the School of Technology. The School of Graduate Studies offers advanced study for qualified individuals who wish to improve their competency for careers in professions related to agriculture, humanities, education, science, and technology. Such study of information, techniques, and skills is provided through curricula leading to the Master of Science, the Master of Arts, the Master of Education, Master of Social Work, Master of Science in Industrial Technology or the Doctor of Philosophy degree and through institutes and workshops designed for those who are not candidates for a higher degree.

North Carolina Agricultural and Technical State University heralds the new frontier of higher education with three new interdisciplinary graduate programs. The new interdisciplinary programs offered are a master of science in Computational Science and Engineering and two Ph.D. Programs, Energy and Environmental Studies and Leadership Studies. These merged disciplines offer students an unparalleled opportunity for specialization in the areas of leadership, economics, environment, engineering and technology. Students will undertake rigorous research and internships while enjoying a close interaction with scientists, engineers and professionals in other fields. The interdisciplinary programs present graduate students with the unique opportunity to draw expertise and resources from various disciplines across the university.

The School of Graduate Studies provides a foundation of knowledge and techniques for those who wish to continue their education in doctoral programs at other institutions or within this institution as it expands into the doctoral arena. While studying at this university, it is expected that graduate students (1) will acquire special competence in one or multiple fields of knowledge; (2) will further develop their ability to think independently and constructively; (3) will develop and demonstrate the ability to collect, organize, evaluate, create, and report facts that will enable them to make a scholarly contribution to knowledge about their discipline; and (4) will make new application and adaptation of existing knowledge so as to contribute to their professions and to humankind.

ORGANIZATION
School of Graduate Studies Council

The School of Graduate Studies Council is responsible for formulating all academic policies and regulations affecting graduate students, graduate courses, and graduate curricula. The council consists of faculty, students and administrative representatives from graduate programs. The Dean of the School of Graduate Studies serves as chairperson of the Council.

GRADUATE ADMISSION

Applications for admission must be accompanied by the following: two official transcripts
from all colleges and universities previously attended including NCA&TSU; letters of recommendation from at least three people who know the applicant’s academic record and potential for graduate study; a non-refundable application fee of $45; and, in most cases, an official Graduate Record Examination (GRE) or other standardized test scores. Most departments also require a letter of intent/statement of purpose. An application and reference forms may be obtained by visiting the Website at http://www.ncat.edu/~gradsch/ or by writing or visiting North Carolina A&T State University, School of Graduate Studies, 120 Gibbs Hall, Greensboro, NC, 27411-3210. When completed, all application materials should be returned according to instructions. Students who choose not to enroll for the semester for which they are applying may request in writing to defer their application and supporting documents for up to one year. After one year, all documents will be shredded and prospective students are required to complete the application process and pay the application fee again.

Required Application Materials

The admission process is designed to collect credentials that will help determine which applicants have the academic preparation, intellectual ability, experience, and motivation to undertake a rigorous program of study. The application materials for each prospective student receive individual attention and thorough review by the intended program committee. In addition to the application form and application fee, the following official documents must be submitted before an application can be considered complete and submitted for evaluation by the intended program. All materials submitted as part of an application become a part of the University’s official record and cannot be returned to the student, nor forwarded to a third party.

Letters of Recommendation

Three letters of recommendation from persons qualified to evaluate the applicant’s academic and professional qualifications are required. The applicant should request recommendations from individuals who are familiar with his/her academic achievement and potential. If the applicant has been out of school for a number of years and is unable to contact professors, letters from other individuals who can address his/her achievement and potential will be accepted. Please carefully complete the top section of the letter of recommendation form before giving it to the persons who have agreed to prepare letters. The recommendation should be returned to the applicant in a sealed envelope. Although it is extremely helpful if these letters are sent with the program material, recommendation letters can be mailed separately. Please inform the person completing the recommendation of the appropriate application deadline so that they can submit the recommendation before the application deadline date. Note the “waiver of right to inspect” statement on these forms; the applicant may or may not elect to sign the waiver. If the applicant elects to sign the waiver, or do not respond at all, the contents of the reference will not be available for inspection. Inspection of the reference letter refers only to viewing the recommendation letter.

Transcripts

Official transcripts of all post-secondary (after high school) education, bearing the signature of the registrar and the seal of the institution, should be sent to the School of Graduate Studies in a sealed envelope. Transcripts that bear the statement “Issued to Student,” or that do not arrive in sealed envelopes, are not considered official. The School of Graduate Studies prefers that applicants submit official transcripts with their application. However, if an institution’s registrar will only send transcripts directly to another institution, the School of Graduate Studies will accept and process transcripts separately. All transcripts should be mailed to: School of Graduate Studies, 1601 E. Market St., Greensboro, NC 27411.. For PBS applications, a copy of the transcript indicating graduation from a baccalaureate program will be accepted. To prevent delays in review of an application, request transcripts before mid-year grades are posted. However, the applicant is still responsible for ensuring that a final transcript is received, showing award of the degree. Transcripts submitted to the School of Graduate Studies become part of the permanent record and cannot be released to another institution, employer, or to the student.
Standardized Test Scores (GRE, GMAT, etc.)

Current (no more than five years old) standardized test scores, usually GRE General Test, are required for most programs.

The School of Graduate Studies’ accreditation requires that official reports (reported directly from the Educational Testing Service) of all required standardized test scores be submitted as part of the application. While photocopies of score reports will be accepted for informal evaluation, an official agency report of all required scores must follow. GRE, GMAT, and MAT scores are reportable for a period of five years from the date of the exam. Test scores of students who apply and decide not to enroll in graduate studies at North Carolina A&T State University are maintained for one year.

Supplemental (Program-Specific) Application Material

Many programs require a letter of intent/statement of purpose, supplemental applications, essays, portfolios, etc. Please check with the intended program regarding their requirements before submitting an application. An application cannot be considered complete until all required materials are submitted.

Because of processing requirements, an admission decision for fall semester cannot be guaranteed unless all credentials are received by July 1, for spring semester by November 1, and for summer sessions by April 1. International students should refer to the deadlines for international students.

International Students

International students are required to meet all of the above requirements in addition to those listed below. The application and all supporting documents should be filed as early as possible to allow sufficient time for processing by both the academic program and the Graduate School. The School of Graduate Studies encourages international students to submit the application and all supporting documents no later than April 1 for Fall admission and by September 1 for Spring admission. Applicants interested in Summer Sessions must contact the International Students and Scholars Office at 336-334-7551 or at isso@ncat.edu.

English Proficiency

Students whose native language is other than English, regardless of citizenship, must submit official TOEFL (Test of English as a Foreign Language) scores issued by the Educational Testing Service as evidence of ability to use English at a level of competence sufficient for graduate work. The minimum requirement for admission is a TOEFL score of 550 or better (213 computer-based score and 79 internet-based score), with scores of 50 on at least two of the sections and no section score below 45. (The minimum score is subject to change, and departments may establish a higher minimum requirement.) The TOEFL test date must be within 24 months of the application deadline date for which admission is requested.

Academic International Transcripts

Official academic transcripts from all international universities are required along with a certified English translation and a course by course transcript evaluation completed and forwarded by an external agency directly to the School of Graduate Studies. North Carolina A&T State University recognizes the following transcript evaluation agencies: Educational Credential Evaluators, Inc. (www.ece.org) and World Education Services (www.wes.org). Evaluations completed by other agencies are not recognized nor accepted by the School of Graduate Studies. Official academic transcripts must bear the signature of the registrar or other academic official, and the official seal of the issuing institution. Students must hold the degree of Bachelor of Arts or Bachelor of Science, or its equivalent, based on a four-year curriculum. Transcripts submitted to the School of Graduate Studies become part of the permanent record and cannot be released to another institution, employer, or to the student.
Financial Verification

The international applicant must also provide the University with verification that the required funds are available to support the proposed program of advanced study. Foreign nationals in the United States at the time application is made must also provide information regarding their current visa status. The University provides special forms to be used by the applicant in supplying this information. For information concerning visa, United States immigration, or the Financial Certificate, contact the Office of International Students and Scholars at isso@ncat.edu at (336) 334-7551.

ADMISSION TO MASTER’S DEGREE PROGRAMS

The procedures followed in evaluating an applicant’s potential for success in graduate work and the criteria used for admission decisions vary according to programs and colleges/schools and reflect an evaluation of the applicant’s potential to engage in graduate work and the capability of the individual programs to accommodate additional students. Generally, requests for admission are considered by departmental admissions committees, which forward the departmental recommendations to the Dean of Graduate Studies. Students denied admission to one academic program must re-apply for admission to be considered by another academic department. Our ability to accept students is governed by our resources as well as by the applicant’s potential to succeed in graduate education. Satisfying minimal standards, however, does not guarantee admission, since the number of eligible applicants generally far exceeds the number of places available. As a result, many well-qualified applicants cannot be accommodated.

Admission is granted for a specific semester or summer term. Any change in the admission date must be requested in writing and approved by the department and School of Graduate Studies. Admission is given to a specific graduate program. Once the academic requirements for that degree program have been completed, no further registration as a graduate student will be permitted unless admission to a new graduate program or classification has been formally approved.

Admission to Degree Programs

Applicants to a master’s degree program for graduate study must have earned a bachelor’s degree from a nationally accredited four-year college. Application forms must be submitted to the School of Graduate Studies with an official transcript of all previous undergraduate and graduate studies, and three letters of recommendation. Applicants may be admitted to graduate studies unconditionally, provisionally, or as a non-degree seeking post-baccalaureate studies (PBS) student. Applicants are admitted without discrimination on grounds of race, color, creed, or gender. Transcripts submitted to the School of Graduate Studies become part of the permanent record and cannot be released to another institution, employer, or to the student.

Unconditional Admission

To qualify for unconditional admission to a master’s degree program for graduate study, an applicant must have earned an overall average of a 2.6 on a 4 point system (or 2.0 on a 3 point system) in his/her undergraduate studies. Some programs require a 3.0 grade point average on a 4.0 scale; therefore, applicants should check appropriate sections of the Graduate Catalog to ascertain the minimum grade point average required. In addition, a student seeking a degree in Agricultural Education, Elementary Education, Technology Education, or Secondary Education must possess, or be qualified to possess, a Class A Teaching License in the area in which he/she wishes to concentrate. See certification exception for Vocational-Industrial Education (post-secondary/private industry).

Provisional Admission

An applicant may be admitted to the master’s degree program for graduate study on a provisional basis if (1) the earned baccalaureate degree is from a non-accredited institution, (2) the record of undergraduate preparation reveals deficiencies that can be removed near the beginning of graduate study, and/or (3) final documents are still needed. A student admitted provisionally may be required to pass examinations to demonstrate his/her knowledge in specified areas, to take specified undergraduate courses to improve his/her background, or to demonstrate his/her competence for graduate work by earning no grades below “B” in the first nine hours of graduate work at this institution.
Post-Baccalaureate Studies (PBS)

An applicant not seeking to be admitted to a graduate program at A&T may be allowed to take
courses for self-improvement or for certificate renewal if the applicant meets other School of Graduate Studies’ entrance
requirements. If a student subsequently wishes to pursue a degree program, he/she must complete the full admission
process. The School of Graduate Studies reserves the right to refuse to accept towards a degree program credits which the
candidate earned while enrolled as a PBS student; in no circumstances may the student apply towards a degree program
more than twelve semester hours earned as a PBS student at A&T. In addition, some academic departments restrict their courses to degree-seeking students only.

ADMISSION TO DOCTORAL PROGRAMS

Applicants to doctoral programs in Electrical Engineering, Energy and Environmental Studies, Industrial and
Systems Engineering, Leadership Studies and Mechanical Engineering must submit completed application forms with
official transcripts of all previous undergraduate and graduate studies and an official copy of their GRE/GMAT test scores.
Other admission criteria are outlined below under the following headings: unconditional admission and provisional
admission. Transcripts submitted to the School of Graduate Studies become part of the permanent record and cannot be
released to another institution, employer, or to the
student. Early application is encouraged, particularly if the applicant wishes to be considered for an assistantship. All
College of Engineering programs, Electrical Engineering, Industrial and Systems Engineering, and Mechanical
Engineering allow BS graduates with an earned GPA of 3.5 or higher to apply directly to the Ph.D. program. Applicants
should contact the respective engineering department for more information on this option.

Unconditional Admission

Unconditional admission is offered to applicants who satisfy all general School of
Graduate Studies requirements. Applicants must have earned a bachelors and masters degree in the appropriate discipline
for Leadership Studies and Energy and Environmental Studies. In addition, they must have received a 3.5 grade point
average in their master’s level work. Graduate Record Examination scores are required. Test of English as a Foreign
Language (TOEFL) scores are required for international students.

Provisional Admission

Provisional admission is offered to applicants who meet all conditions except the 3.5
grade point average in the master’s degree. Provisional students must convert to
unconditional admission on a timely basis by achieving a 3.5 average on graduate coursework at the end of the semester in
which the the ninth credit of graduate coursework is completed.

JOINT DOCTORAL PROGRAM WITH
INDIANA STATE UNIVERSITY

North Carolina A&T State University School of Technology and Indiana State University
School of Technology offer a joint doctor of philosophy consortium degree program in
Technology. The specializations, program requirements, and admission requirements are listed
below.

Specializations:
• Construction Management
• Digital Communications
• Human Resource Development and Training
• Manufacturing Systems
• Quality Systems
Program Requirements

The Ph.D. in Technology Management consists of a minimum of 90 hours of course work and research at the post-baccalaureate level. Included is course work in a general technology core, a research core, a technical specialization, an internship, a residency requirement, and a dissertation.

Admission Requirements

Admission to the program is based on students meeting the following standards. The qualitative standards identified below reflect the minimum necessary for admission but do not ensure admittance.

- Completed application mailed to the School of Graduate Studies at Indiana State University. The on-line application can be found at www.indstate.edu/grad/applications.html.
- Bachelor’s degree from an accredited university with a minimum undergraduate grade point average of 3.0 on a 4.0 scale.
- Minimum cumulative master’s level grade point average of 3.5 on a 4.0 scale.
- Graduate Record Examination minimum scores of 500 on the verbal, quantitative, and analytical general tests.
- Five letters of recommendation.
- Employer validation of 2000 hours of occupational experience related to a technical specialization.
- Written statement including reasons for selecting the program, specialization, and goals upon graduation.

GRADUATE PROGRAMS REQUIRING CLASS A LICENSURE AND LICENSURE ONLY

Students applying for graduate degree programs in agricultural education, elementary education, instructional technology, technology education, and secondary education programs are required to possess or be eligible to possess the Class A license. Eligibility for the Class M (graduate-level) licensure requires an individual to possess the initial Class A licensure.

Agricultural Education

Students pursuing the M.S. degree in Agricultural Education must satisfy requirements for the Class A licensure in agricultural education. Students who have earned some but not all undergraduate credits for agricultural education and students without the A license in the area of agricultural education should consult with the agricultural education coordinator or the chairperson in the Department of Agribusiness, Applied Economics and Agriscience Education to design a program of study that addresses requirements for the initial license. This program of study supplements the graduate requirements in this teaching specialty area. Students may be required to enroll in undergraduate courses in education and student teaching to fulfill licensure requirements.

Elementary Education

Students pursuing the M.A.Ed. degree in Elementary Education must satisfy requirements for the Class A licensure in elementary education before being admitted to the program.
Instructional Technology

Students interested in the M.S. degree in Instructional Technology and the 076 (Media Coordinator), 074 (Instructional Technology Specialist-Telecommunications) and 077 (Instructional Technology Specialist-Computers) licensure must possess an initial Class A teaching license. Individuals without this license must meet with the instructional technology coordinator or the chairperson in the Department of Curriculum and Instruction to design a Class A licensure program of study before being admitted to the program. University or completion of the application on-line at: www.indstate.edu/grad/applications.

Technology Education

Students pursuing the M.S. in Technology Education with a concentration in Technology Education, Teaching; Trade and Industrial Education, Teaching; or Workforce Development Director must satisfy the requirements for the Class A license in their area before being admitted to the program. They may be admitted as Post-Baccalaureate Studies students to pursue completing licensure requirements.

PROFESSIONAL EDUCATION REQUIREMENTS FOR LICENSURE

Students who enter graduate study without the required credits in education courses and who are pursuing a teaching program in secondary education must complete a minimum of 24 semester hours which may include the following undergraduate/graduate level courses: CUIN 400, Psychological Foundations of Education; CUIN 619, Learning Theories; CUIN 625, Theory of American Public Education or CUIN 701; Philosophy of Education; CUIN 500, Principles and Curricula of Secondary Schools or CUIN 720, Curriculum Development; CUIN 624, Teaching Reading in the Secondary School; and CUIN 560, Observation and Student Teaching, or CUIN 559, Student Teaching in the Elementary School.

REGISTRATION AND RECORDS

It is each student’s responsibility to be fully conversant with the academic regulations and requirements set forth in this Catalog and for revisions of same as posted on campus bulletin boards or released in other official publications of the University. Lack of knowledge of regulations and requirements does not excuse the student from complying with academic regulations and meeting the requirements.

A student’s program of study must be approved by his/her advisor, his/her chairperson, and members of the faculty advisor committee in his/her major department at registration. Advisors will make every attempt to give effective guidance to students in academic matters and to refer students to those qualified to help them in other matters. However, the final responsibility for meeting all academic requirements for a selected program rests with the student.

Course of Study

A student should refer to the requirements of his/her respective department or school for his/her program of study and confer with his/her advisor whenever problems arise. The student is expected to follow the program of academic work outlined as closely as possible.

Official Registration

Registration is a time designated each semester to allow the student and his/her advisor to review the student’s records and plan a program for the next semester. The student has an opportunity to discuss academic problems with the advisor. Registration helps to ensure that the courses requested on the registered schedule will be available to the student the following semester. Any student who is enrolled in the University during the registration period is expected to register during the period designated for this purpose. In order for a student to get credit for a course, he/she must be properly registered in that course. This means that the student must have gone through the registration procedures as outlined
Late Registration

A student is expected to complete enrollment (including the payment of all required fees) on the dates listed on the University Calendar. The payment of fees is part of the registration process. No student is eligible to attend classes until the required fees have been paid. A student who fails to complete registration during the scheduled dates will be required to pay a late registration fee of $20.00 beginning on the date specified in the University Calendar.

Course Load

A full-time graduate course load is 9 to 15 credits per semester (including audits) and 3-7 credits per summer session (including audits). Audits in subjects in which the student has no previous experience will be evaluated at full credit value in determining course load. Audits taken as repetition of work previously accomplished are considered at one half of their value in calculating course loads. With the single exception of foreign language audits, all audit registrations must fall within the range of maximum permissible course loads. The maximum load is 15 semester hours.

Foreign students on F-1 and J-1 visas are required by the Immigration and Naturalization Service to carry a full-time course of study to remain in status.

University Staff

The maximum load for any fully employed member of the University faculty or staff will be six semester hours for the academic year.

Concurrent Registration In Other Institutions

A student registered in a degree program in the School of Graduate Studies may not enroll concurrently in another graduate school except upon permission, secured in advance, from the Dean of the School of Graduate Studies.

Grading Policies

Grades for graduate students are recorded as follows: A, excellent; B, average; C, below average; F, failure; S, work in progress (for courses in research); I, incomplete; W, withdrawal.
1. In order to earn a degree, a student must have a cumulative average of “B” (a grade point average of 3.0 on a system in which one hour of “A” earns 4 grade points).
2. A graduate student automatically goes on probation when his/her cumulative average falls below “B.”
3. A student may be dropped from the degree program if he/she has not been removed from probation after two successive terms as a full-time student.
4. A student may not repeat a required course in which “C” or above was earned.
5. A student may repeat a required course in which “F” was earned. A student may not repeat the course more than once. If a student fails a second time, he/she is dismissed from the degree program.
6. All hours attempted in graduate courses and all grade points earned are included in the computation of the cumulative average of a graduate student.
7. A student who stops attending a course but fails to withdraw officially may be assigned a grade of “F.”
8. All grades of “I” must be removed during the student’s next term of enrollment.
9. A student may not count towards a degree program any course in which a grade of “F” was earned.

NOTE: The North Carolina Department of Public Instruction does not accept courses in which a student has received a “D” or “F” for renewal of certification.

Audit

A regular student may audit a course by picking up the Audit Form from the Office of the
Registrar. He/she must register officially for the course and pay the University Cashier. Attendance, preparation, and participation in the classroom discussion and laboratory exercises shall be at the discretion of the instructor.

A student who audits courses is not required to take examinations or tests and he/she receives no credit. An auditor may not change his/her registration from audit to credit or from credit to audit after late registration ends. COURSE AUDITING IS WITHOUT CREDIT.

Change of Grade

A request for a change of grade, for any reason, must be made within one year following the date the original grade was assigned by the faculty member.

Grade Appeal

A student may appeal the final grade earned in a course. Initially, the student should attempt to resolve the matter informally through meeting with the instructor of the course, the department chairperson, and/or dean of the academic unit in which the grade was assigned. If the matter is not resolved through this level of interaction, then the student should consult the individual school/college on its written grade appeal policy. A student wishing to pursue a written appeal of a grade must demonstrate a legitimate basis for the appeal. Grade appeal decisions are final at the level of the school/college.

Academic Warning, Probation, and Dismissal

A cumulative grade point average of 3.0 (B) is required for graduation. A department shall recommend courses in which a student accumulates nine or more semester hours of grades below “B” shall be dismissed. When a student’s grade point average (GPA) falls below 3.0, he/she will be warned and informed that he/she must raise the GPA to 3.0 or better within the next nine semester hours. Students failing to do so will be dismissed from the School of Graduate Studies and no further registration in a graduate classification will be permitted.

Graduate-level courses with a grade below “C” are not acceptable in a program of study. In addition, graduate transfer courses with a grade of “C” or lower are not acceptable in the program of study. See section on Grading Policies.

Eligibility for Assistantship

A graduate student must be in good academic standing (3.0 GPA or better) to be eligible for appointment to an assistantship, fellowship, scholarship or traineeship, and must be registered in each semester in which the appointment is in effect.

Changing Programs

A student may transfer from one School/College of the University to another with the written approval and acceptance of the graduate programs involved. The proper forms on which to apply for such a change are to be obtained from the School of Graduate Studies Office and executed at least six weeks prior to the beginning of the semester in which the student plans to transfer. When such a transfer is made, the student must satisfy the current academic requirements of the School/College and/or department into which the student has transferred.

Withdrawal from the University

A student who wishes or is asked to leave the University at any time during the semester shall execute and file an official withdrawal form. This form may be obtained from the Counseling Services. The form should be completed and submitted to the Office of the Registrar.

A student who withdraws from the University within 15 calendar days of the beginning of the final examination period for the semester shall receive a “W” in all classes enrolled. Failure to execute and file this form in a timely manner will result in a student receiving an “F” for each course in which he/she was enrolled during the semester in question.

Incompletes
A student is expected to complete all requirements of a particular course during the semester in which he/she is registered. However, if at the end of the semester a small portion of the work remains unfinished and should be deferred because of some serious circumstances beyond the control of the student, an “I” may be submitted. Along with the recording of the incomplete grade, the instructor must also file with the chairperson of the department the student’s average grade and a written description of the work that must be completed before the incomplete is removed.

Procedure for the Removal of an Incomplete

An incomplete grade must be removed within SIX WEEKS after the beginning of the next semester. If the student has not removed the incomplete within the time specified, the incomplete is automatically changed to an “F.” Developmental, thesis, and research courses are exempted from the six-week time limit.

Continuous Registration

After a student is admitted to the School of Graduate Studies and enrolls for the first time, she/he is required to maintain continuous registration, i.e., be enrolled each semester, excluding summer sessions, until he/she has either graduated or her/his graduate program at North Carolina A&T State University has been terminated. All students must be registered in the semester or summer session in which they formally complete their degree requirements.

A student in good academic standing who must interrupt his/her graduate program for good reasons may request a leave of absence from graduate study for a definite period of time, normally not to exceed one year. The request should be made at least one month prior to the term involved. Upon endorsement of the request by the student’s graduate advisory committee and Director of Graduate Programs, and approval by the School of Graduate Studies, the student will not be required to be registered during the leave of absence. The time that the student spends on an approved leave of absence will be included in the time allowed to complete the degree, i.e., six years for the master’s and ten years for the doctorate.

Graduate students whose programs have been terminated because of failure to maintain continuous registration and who have not been granted a leave of absence will be required to complete a new application and be formally accepted into the program of study again.

Changes in Schedule

A change in a student’s class schedule may be made with the consent of his/her advisor or department chairperson. However, if a student’s schedule is changed after the designated drop add period, the consent of the Dean of the School of Graduate Studies is required.

The student must obtain and properly execute the Change of Schedule Form. This form is obtained from the Office of the Registrar and should be returned to that office.

CLASS ATTENDANCE POLICY

Class Attendance

The University is committed to the principle that regular and punctual class attendance is essential to the students’ optimum scholastic achievement. An absence, excused or unexcused, does not relieve the student of any course requirement.

Attendance is required and punctuality is expected! A student is responsible for all the work, including tests and written work, of all class meetings.

Instructor’s Responsibility

1. Attendance requirements should be stated in the course syllabus and announced in class, particularly at the beginning of each term. If class attendance is to affect a student’s course grade, then a statement to that effect must be a part of the course syllabus distributed to each student.

2. Instructors will keep attendance records in all classes. Each instructor has the right to prescribe procedures as to how and when attendance will be taken.

Student’s Responsibility
It is the responsibility of each student to learn and comply with the requirements set by the instructor for each class in which he or she is registered. The student should:

1. have knowledge of each instructor’s attendance and monitoring practices for class absences during the term,
2. become familiar with all materials covered in each course during absences and makeup work of any work required by the instructor, and
3. initiate the request to make-up work on the first day of class attendance after the absence.

Policy on the Make-up of Required Course Work

The administration, faculty and staff recognize that there are circumstances and events which require students to miss classes and require course work which may be performed or due on the day of the absence. Also, they recognize that required course work is needed to give each student an adequate performance evaluation. Therefore, whenever reasonable (and more specifically described below), students should be allowed to make up required work.

The following definitions will apply with respect to this policy:

a. Required course work – All work which will be used in the determination of final grades, e.g. examinations, announced quizzes, required papers and essays, required assignments.

b. Instructor – Person responsible for the course and providing instruction and evaluation.

c. Permissible reasons for requesting make up of required work – Sickness (verification needed) – death of relatives (immediate family); participation in approved University related activities; acting in the capacity of a representative of the University (band, choir, sports related travel, etc.); extraordinary circumstances (court appearance, family emergency, etc.); require a signed statement. NOTE: Other reasons for requesting make up have required course work is not acceptable.

d. Documentation – Verification of sickness requires signed statement of a physician or a duly authorized staff member of the Health Center. Verification of death requires signed statement from the Minister or Funeral Director. Verification of participation in University related activities requires signed statement from the Office of the Vice Chancellor for Academic Affairs. Verification of other reasonable circumstances; for example, court appearance, family emergency, etc. require a signed statement from an appropriate official (e.g., Court Official, parent or guardian, etc.).

The policy regarding make-up of required course work is as follows:

1. A student may petition an instructor to make up required course work whenever the student has a permissible reason for requesting make up of required course work.
2. A student will be required to present documentation which certifies absence constituting permissible reason.
3. Whenever possible, a student should consult with the instructor prior to an absence which will involve the failure to do required course work. Arrangements for make up should be discussed and agreed upon at this time.
4. A student must petition for make up of required course work on the first day that he returns to class.
5. If permission is granted to make up required course work, the instructor and the student should agree on an acceptable date for completion of missed required course work.
6. Failure to comply with item 4 may result in the denial to make up required course work.

Instructors should schedule make up work at a time that is convenient to both the instructor and the student.
Grade Reports

As soon as grades are determined, at the end of each semester or summer term, students may go to the website at https://webfor1.ncat.edu/, and retrieve their grades.

Privacy of Student Records

The University insures students access to their official academic records but prohibits the release of personally identifiable information, other than "directory information," from these records without their permission, except as specified by public law 93-380. "Directory information" includes:

Student's name, address, telephone number, university email address, date and place of birth, school, major, sex, marital status, dates of attendance, degree received, honors received, institution(s) attended prior to admission to North Carolina Agricultural and Technical State University, past and present participation in officially recognized sports and activities, and physical factors. Public Law 93-380 further provides that any student may, upon written request, restrict the printing of such personal information relating to himself or herself as is usually included in campus directories.

A student who desires to have "directory information" withheld must submit a written request to the Office of the Registrar one week before the beginning of classes for the semester or session in which he or she is enrolled.

Access to Student Records

1. The policy for the administration of student academic records is in accordance with the Family Educational Rights and Privacy Act of 1974 as amended.
2. Students have the right to inspect and review any and all official records, files, and data directly related to them.
3. A student who believes that his or her record contains inaccurate or misleading information shall have an opportunity for a hearing to challenge the content of the record, to insure that the record is not inaccurate, misleading, or otherwise in violation of his or her privacy or rights, and to provide an opportunity for the correction or deletion of any such inaccurate, misleading, or otherwise inappropriate data contained therein or include the student’s own statement of explanation.
4. The University will comply with requests from his or her record within a reasonable period of time and not later than (30) days after the request is received.
5. The release of academic records requires the written permission of the student, except as provided by Public Law 93-380. Transcripts are not issued to a student who has not met his or her financial obligations to the University.

Copies of the “University’s Statement” concerning access to students records are available in the Office of the Registrar as well as the office of each school dean and department chairperson.

Change of Name and Address

It is the obligation of every student to notify the Office of the Registrar of any change in name or address. The student may also complete the change of address form online by visiting the website at https://webfor1.ncat.edu/. Failure to do so can cause serious delay in the handling of the student’s records and in notification of emergencies at home. A legal court document must accompany the request to change the student’s name.

Transcripts of Records

Requests for official transcripts of students’ records should be addressed to the University Registrar. The cost is $4.00 per copy.

Indebtedness to the University

No diploma, certificate, or transcript of a record will be issued if a student has not made satisfactory settlement with the cashier for all indebtedness to the University. A student may not be permitted to attend classes or take final examinations after the due date of any unpaid obligation.

Academic Dishonesty Policy

North Carolina A&T State University is committed to a policy of academic honesty for all students. Examples of Academic Dishonesty include but are not limited to the following:
• Cheating or knowingly assisting another student in committing an act of academic dishonesty.
• Plagiarism (unauthorized use of another person’s words or ideas as one’s own) which includes but is not necessarily limited to submitting examinations, theses, reports, drawings, laboratory notes, or other materials as one’s own work when such work has been prepared by another person or copied from another person.
• Unauthorized possession of examinations or reserved library materials, destruction or hiding of source materials, library materials, or laboratory materials, or experiments, or any other similar action.
• Unauthorized changing of grades or marking on an examination or in an instructor’s grade book, or such change of any grade record.
• Aiding or abetting in the infraction of any of the provisions anticipated under the general standards of student conduct.
• Assisting another student in violating any of the above rules.

A student who has committed an act of academic dishonesty has failed to meet a basic requirement of satisfactory academic performance. Thus, academic dishonesty is not only a basis for disciplinary action but may also affect the evaluation of the student’s level of performance. Any student who commits an act of academic dishonesty is subject to disciplinary action as defined below.

In instances where a student has clearly been identified as having committed an academic act of dishonesty, the instructor may take appropriate punitive action including a loss of credit for an assignment, an examination or project, or awarding a grade of “F” for the course subject to the review and endorsement of the chairperson and the dean. Repeated offenses can even lead to dismissal from the University.

Student Appeals on Academic Dishonesty
A student who feels unfairly treated as a result of an academic dishonesty matter may appeal the action in writing to the University Judicial Tribunal. The written notice of appeal must be submitted within one week (seven calendar days) of the date of the incident. The student should refer to the section on Appellate Procedures in the Student Handbook.

DISRUPTIVE BEHAVIOR IN THE CLASSROOM
(UNC-GA Policies for Students-Adopted by BOG October 26, 1970)

The instructor may withdraw a student from a course for behavior he deems to be disruptive to the class. The grade assigned will be “W” if the behavior occurs before the deadline for dropping a course without academic penalty, and the instructor has the option of giving a “W” or a “F” if the behavior occurs after the deadline.

I. BINDING PROCEDURES FOR INSTRUCTORS

The instructor must provide an opportunity for the student to be heard. In providing this opportunity, the instructor must follow the procedure described below:

1. The student should be notified in writing at the next class attended that the instructor proposes to drop the student from the course for disruption of the class, and the instructor should provide the student with written instructions regarding the time and place for a meeting with the instructor. A copy of this written notification must be sent to the instructor’s department head at the same time.

2. A time limit of five working days (M-F) from the time written notification is given for the student’s opportunity to be heard by the instructor.

3. The date of notification establishes whether the withdrawn student will be given a “W” or “F.” “W” is appropriate before the 8-week drop date and either “W” or “F” is appropriate after that date, at the instructor’s discretion.

4. The instructor may suspend the student from class until the instructor takes final action to withdraw the student from class or to allow the student to continue in the class. The final decision to withdraw or continue the student is the instructor’s.

5. Either party in the resolution of this dispute may invite one other person of the university community to be present as an observer.
II. STUDENTS’ RIGHT TO APPEAL

If the student wishes to appeal the instructor’s decision to withdraw the student from class, he/she should follow the academic appeal procedures.

Cell Phone Policy

The use of cell phones inside the classroom during the classroom period is prohibited. Please be advised that placing or receiving calls as well as conversing on cell phones during the conduct of a class shall be considered as disruptive behavior for students and unprofessional behavior for faculty and staff.

Graduation

There are four official graduations (June, August, December and May) for graduate students per year, occurring at the end of the fall and spring semesters and at the end of the second summer session. Formal commencement exercises are held at the end of the spring and fall semesters, but any student who graduated during summer sessions is eligible to participate in the December Commencement. Any doctoral candidate wishing to have the degree conferred in absentia must notify the School of Graduate Studies in writing; master’s candidates should contact their departments or programs. Students must be enrolled in the semester in which they apply for graduation.

TUITION AND FEES

The fee charged to a full-time student carrying nine or more semester hours of work is the same as that charged to a full-time graduate student. For one academic year, a state resident should expect to pay approximately $4,030.00, which will cover tuition and required fees; this sum does not include room and board charges. Tuition and required fees for an out-of-state student carrying a full schedule will total $13,615.00 for the academic year.

As student fees are subject to change without prior notice, it is advised that the Treasurer’s Office be contacted for complete information concerning charges for full-time and part-time students.

North Carolina A & T State University
Tuition & Fees Rate 2007-2008

<table>
<thead>
<tr>
<th>No. of Hrs.</th>
<th>IN-STATE GRADUATE STUDENTS</th>
<th></th>
<th>GRADUATE STUDENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tuition</td>
<td>Fees</td>
<td>Total</td>
</tr>
<tr>
<td>1-2</td>
<td>$258.25</td>
<td>$106.40</td>
<td>$364.65</td>
</tr>
<tr>
<td>3-5</td>
<td>$516.50</td>
<td>$177.00</td>
<td>$693.50</td>
</tr>
<tr>
<td>6-7</td>
<td>$774.75</td>
<td>$247.75</td>
<td>$1,022.50</td>
</tr>
<tr>
<td>8</td>
<td>$774.75</td>
<td>$753.00</td>
<td>$1,527.75</td>
</tr>
<tr>
<td>9 or more</td>
<td>$1,033.00</td>
<td>$753.00</td>
<td>$1,786.00</td>
</tr>
</tbody>
</table>

Special Fees

- Fee for processing admission application: $45.00
- Late Registration: $20.00
- Graduation fees:
 - Diploma: $60.00
 - Regalia (cap and gown): $30.00
 - Transcript: $4.00
- Master’s Thesis and Dissertation binding fee: $48.00

EXPENSES AND FINANCIAL AID
General Information

NORTH CAROLINA A&T STATE UNIVERSITY IS A PUBLICLY SUPPORTED INSTITUTION. TUITION PAYMENTS AND OTHER REQUIRED STUDENT FEES MEET ONLY A PART OF THE TOTAL COST OF EDUCATION OF STUDENTS ENROLLED. ON THE AVERAGE, FOR EACH FULL-TIME STUDENT ENROLLED IN AN INSTITUTION OF THE UNIVERSITY OF NORTH CAROLINA, THE STATE OF NORTH CAROLINA APPROPRIATED $8,558 PER YEAR IN PUBLIC FUNDS TO SUPPORT THE EDUCATIONAL PROGRAMS OFFERED.

THE UNIVERSITY RESERVES THE RIGHT TO INCREASE OR DECREASE ALL FEES AND CHARGES AS WELL AS ADD OR DELETE ITEMS OF EXPENSE WITHOUT ADVANCED NOTICE AS CIRCUMSTANCES, IN THE JUDGMENT OF THE ADMINISTRATION, MAY REQUIRE.

Boarding and Lodging fees are based on the actual number of days school is in session and do not include holidays, breaks, or any other University vacations. Students’ property in dormitories and other University buildings is at the sole risk of the owner, and the University is not responsible for loss, theft, or damage to such property arising from any cause. Students are required to pay for any loss or damage to University property cost due to abuse, negligence, or malicious action at replacement, in addition to being subject to disciplinary action for such loss or damage.

All undergraduate and graduate students are required to purchase all textbooks. This includes hardcover and paperback textbooks. The cost will vary according to academic discipline. Other policies and procedures governing the book-purchase system can be obtained from the University Bookstore.

Personal spending money should be sent directly to and made payable to the student in the form of money orders or certified checks. As a policy, the University does not cash personal checks for students in any amount.

Grades, diplomas and transcripts are withheld until the student has paid in full all fees and charges due to the University. A student in debt to the University in any amount will not be permitted to enroll for any subsequent semester until his or her obligations are paid. If special financial arrangements have been made, failure to comply with these arrangements as stipulated will result in the student forfeiting his/her privilege to receive special financial arrangements for deferments in the future.

Special Notice to Veterans

Veterans attending school under the provisions of Public Law 89-358 receive a monthly subsistence allowance from Veterans Administration. Therefore, veterans are responsible for meeting all of their required fee obligations.

Veterans attending school under the provision of Public Law 894 (Disabled Veterans) receive a monthly subsistence allowance from Veterans Administration. Also, Veterans Administration pays directly to the school the cost of the veteran’s tuition and required fees. All other fees are the responsibility of the veteran.

Veterans may contact the Veterans Affairs Office on Campus for any special consideration which may be available.
Auditing

To audit a course, a student must obtain permission from the Dean of the School of Graduate Studies and must submit the necessary forms during the registration period. A part-time student must pay all fees, including tuition, that would be charged to a student taking the course for credit. A full-time student is not required to pay any additional fees for auditing. A change from credit registration to audit will not be permitted after late registration ends. An auditor is not required to participate in class discussions, prepare assignments, or take examinations.

Full-Time Faculty and Employees

Full-time employees of the University who hold membership in the Teachers’ and State Employees’ Retirement System may register for credit or as auditors with free tuition privileges for one course in any academic term at any campus of the University of North Carolina. Each applicant for free tuition must submit through regular channels a form provided by the University. COURSE AUDITING IS WITHOUT CREDIT.

Refund Policy

Refunds for official withdrawals from North Carolina A&T State University are prorated, based upon the percentage of the enrollment period attended. No refunds are made for official withdrawals after the fifth week of the enrollment period. The prorated withdrawal schedule is publicized in the schedule of classes booklet and through other University media.

RESIDENCE STATUS FOR TUITION PURPOSES

The basis for determining the appropriate tuition charge rests upon whether a student is a resident or a nonresident. Each student must make a statement as to the length of his or her residence in North Carolina with assessment by the institution of that statement to be conditioned by the following:

Residence. To qualify as a resident for tuition purposes, a person must become a legal resident and remain a legal resident for at least twelve months (exactly 365 days) immediately prior to classification. Thus, there is a distinction between legal residence and residence for tuition purposes. Furthermore, twelve months’ (exactly 365 days) legal residence means more than simple abode in North Carolina. In particular, it means maintaining a domicile (permanent home of indefinite duration) as opposed to “maintaining a mere temporary residence or abode incident to enrollment in an institution of higher education.” The burden of establishing facts which justify classification of a student as a resident entitled to in-state tuition rates is on the applicant for such classification, who must show his or her entitlement by the preponderance (the greater part) of the residency information.

Initiative. Being classified a resident for tuition purposes is contingent on the student’s seeking such status and providing all information that the institution may require in making the determination.

Parents’ Domicile. If an individual, irrespective of age, has living parent(s) or court-appointed guardian of the person, the domicile of such parent(s) or guardian is, prima facie, the domicile of the individual; but this prima facie evidence of the individual’s domicile may or may not be sustained by other information. Further, nondomiciliary status of parents is not deemed prima facie evidence of the applicant child’s status if the applicant has lived (though not necessarily legally resided) in North Carolina for the five years preceding enrollment or reregistration.

Effect of marriage. Marriage alone does not prevent a person from becoming or continuing to be a resident for tuition purposes, nor does marriage in any circumstance insure that a person will become or continue to be a resident for tuition purposes. Marriage and the legal residence of one’s spouse are, however, relevant information in determining residency intent. Furthermore, if both a husband and his wife are legal residents of North Carolina and if one of them has been a legal resident longer than the other, then the longer duration may be claimed by either spouse in meeting the twelve-month requirement for in-state tuition status.

Military Personnel. A North Carolinian who serves outside the State in the armed forces does not lose North Carolina domicile simply by reason of such service. And students from the military may prove retention or establishment of residence by reference, as in other cases, to residency acts accompanied by residency intent.
In addition, a separate North Carolina statute affords tuition rate benefits to certain military personnel and their dependents even though not qualifying for the in-state tuition rate by reason of twelve months' legal residence in North Carolina. Members of the armed services, while stationed in and concurrently living in North Carolina, may be charged a tuition rate lower than the out-of-state tuition rate to the extent that the total of entitlements for applicable tuition costs available from the federal government, plus certain amounts based under a statutory formula upon the in-state tuition rate, is a sum less than the out-of-state tuition rate for the pertinent enrollment. A dependent relative of a service member stationed in North Carolina is eligible to be charged the in-state tuition rate while the dependent relative is living in North Carolina with the service member and if the dependent relative has met any requirement of the Selective Service System applicable to the dependent relative. These tuition benefits may be enjoyed only if the applicable requirements for admission have been met; these benefits alone do not provide the basis for receiving those derivative benefits under the provisions of the residence classification statute reviewed elsewhere in this summary.

Grace Period. If a person (1) has been a bona fide legal resident, (2) has consequently been classified a resident for tuition purposes, and (3) has subsequently lost North Carolina legal residence while enrolled at a public institution of higher education, that person may continue to enjoy the in-state tuition rate for a grace period of twelve months measured from the date on which North Carolina legal residence was lost. If the twelve months end during an academic term for which the person is enrolled at a State institution of higher education, the grace period extends, in addition, to the end of that term. The fact of marriage to one who continues domiciled outside North Carolina does not by itself cause loss of legal residence marking the beginning of the grace period.

Minors. Minors (persons under 18 years of age) usually have the domicile of their parents, but certain special cases are recognized by the residence classification statute in determining residence for tuition purposes.

(a) If a minor’s parents live apart, the minor’s domicile is deemed to be North Carolina for the time period(s) that either parent, as a North Carolina legal resident, may claim and does claim the minor as a tax dependent, even if other law or judicial act assigns the minor’s domicile outside North Carolina. A minor thus deemed to be a legal resident will not, upon achieving majority before enrolling at an institution of higher education, lose North Carolina legal residence if that person (1) upon becoming an adult “acts, to the extent that the person’s degree of actual emancipation permits, in a manner consistent with bona fide legal residence in North Carolina” and (2) “begins enrollment at an institution of higher education not later than the Fall academic term following completion of education prerequisite to admission at such institution.”

(b) If a minor has lived for five or more consecutive years with relatives (other than parents) who are domiciled in North Carolina and if the relatives have functioned during this time as if they were personal guardians, the minor will be deemed a resident for tuition purposes for an enrolled term commencing immediately after at least five years in which these circumstances have existed. If under this consideration a minor is deemed to be a resident for tuition purposes immediately prior to his or her eighteenth birthday, that person on achieving majority will be deemed a legal resident of North Carolina at least twelve months’ duration. This provision acts to confer in-state tuition status even in the face of other provisions of law to the contrary; however, a person deemed a resident of twelve months duration pursuant to this provision continues to be a legal resident of the State only so long as he or she does not abandon North Carolina domicile.

Lost but Regained Domicile. If a student ceases enrollment at or graduates from an institution of higher education while classified a resident for tuition purposes, and then both abandons and reacquires North Carolina domicile within a 12-month period, that person, if he or she continues to maintain the reacquired domicile into re-enrollment at an institution of higher education, may re-enroll at the in-state tuition rate without having to meet the usual twelve-month durational requirement. However, any one person may receive the benefit of the provision only once.

Change of Status. A student admitted to initial enrollment in an institution (or permitted to re-enroll following an absence from the institutional program which involved a formal withdrawal from enrollment) must be classified by the admitting institution either as a resident or as a nonresident for tuition purposes prior to actual enrollment. A residence status classification once assigned (and finalized pursuant to any appeal properly taken) may be changed thereafter (with corresponding change in billing rates) only at intervals corresponding with the established primary divisions of the academic year.

Transfer Students. When a student transfers from one North Carolina public institution of higher education to another, he/she is treated as a new student by the institution to which he/she is transferring and must be assigned an initial residence status classification for tuition purposes.

Financial Support for Graduate Students

Financial aid is money awarded to assist students in paying for the cost of an education.
Applying and receiving financial aid is a simple process. Students apply for need-based and some non-need-based financial aid by completing the Free Application for Federal Student Aid (FAFSA). Students should complete this form immediately after January 1. There is no processing fee and all graduate students are encouraged to complete the application. Students can submit the FAFSA on the Web (http://www.fafsa.ed.gov) or mail the form to the Federal Processing Center. North Carolina A&T State University school code is 002905. The University’s priority deadline for receipt of the FAFSA is March 15th; however, students who miss the deadline are still encouraged to complete and mail the FAFSA as soon as possible.

A financial aid award will not be offered until a student is admitted to the University. Therefore, it is important that the admission procedure be completed as soon as possible.

A student enrolled as a “Post-baccalaureate Studies (PBS)” student is not eligible to receive Federal and State financial aid unless enrolled in a Teacher Certification Program. The student must petition the Dean of Graduate Studies to have his/her status reviewed and changed, if applicable.

All students must re-apply for financial assistance each academic year and separately for summer school.

Types of Available Funds

Graduate students are eligible for Assistantships, Stipends, Scholarships, Work, Loans and some Grants. Work assistance must be earned and loans must be repaid.

Graduate Assistantship

A limited number of graduate assistantships are available to qualified individuals. The student is assigned to assist a professor or a department for a limited number of hours for the duration of the assistantship. Some graduate assistants are assigned to teach freshman classes. Normally, a graduate assistant will be assigned to teach only one class per semester, but he/she may be assigned to teach a maximum of two classes. The assistantship offers a stipend that will assist a student to pay required tuition, fees, books, and room and board. Application for an assistantship must be made to the Dean of the School of Graduate Studies at least five months before fall registration. Only full-time graduate students are eligible.

Stipends

Stipend scholarships are considered a resource for financial aid purposes and must be included in the financial aid award. If the student receives stipend assistance, the amount may reduce or cancel federal or state financial assistance.

Course Work

Masters and Doctoral students must enroll in at least half time (5 hours) of graduate course work (600 or 700 course level) to be eligible for a Federal Direct Student Loan. The University considers 9 hours to be full-time; therefore, half-time would be 5 hours. Financial aid for Graduate students will not cover undergraduate courses taken unless the student is enrolled in the Teacher Certification Program.

Scholarships

The majority of scholarships at NC A&T State University are awarded through the academic department. Students are strongly urged to contact their academic department for additional scholarship information. Students receiving an outside scholarship should forward a copy of the notice to the Student Financial Aid Office. The scholarship will be included in the student’s award and may cause an adjustment to the current award package. All scholarship checks should be made payable to North Carolina A&T State University and mailed to the Treasurer’s Office. The check should include the student’s name and social security number.

Federal Work Study

Federal Work-Study is available to eligible students. Job assignments are available to graduate students with financial need. The Federal Work-Study Program provides students the opportunity to earn part of their educational expenses and to gain valuable work experience for
future reference. The total amount of the award is listed on the award notification. Students who are awarded Federal Work-Study must pick up an assignment form from the Student Financial Aid Office at the beginning of the Fall semester. Students cannot begin work until an authorization is received and returned to the Student Financial Aid Office. Students should report back to the assigned department in the Spring semester. The Student Financial Aid Office is not responsible for paying hours which exceed the award amount. Students working on campus are paid monthly, normally, on the 15th of each month. It is the student’s and supervisor’s responsibility to ensure that the award amount is not exceeded. Time sheets are due in the Student Financial Aid Office monthly in order for the student to be paid. Time sheets received after the due date will be held until the next payroll. Checks are distributed from the Treasurer’s Office. The Federal Work-Study award cannot be used toward payment of University fees at registration.

Loans

The Student Financial Aid Office awards funds through the Federal Direct Loan Program to Graduate Students. This is a loan and must be repaid with interest. There are two types of Federal Direct loans. Subsidized Loans are based on financial need and the government pays the interest on the student’s behalf as long as the student is attending school at least half-time (5 or more hours per semester). The student is responsible for the interest payments on an unsubsidized loan. The interest is billed quarterly. Students can allow the interest to be capitalized and added to the principal, if payment cannot be made. Students must sign a promissory note. Promissory notes are signed via the web. Students are encouraged to borrow the minimum loan amount. If this is the student’s first time borrowing at NC A&T State University, the borrower must attend an entrance counseling session before the first disbursement is made. Students should review the promissory note for the expected disbursement dates. Loan funds will be applied to the student’s account according to the University’s schedule. The loan is disbursed in two payments. Generally, refunds are available from the Treasurer’s Office five to ten days after the loan is applied to the account.

Students are notified of the amount of aid received through the award notification. The award notification indicates the gross amount of the loan for the fall and spring semester and/or summer sessions. The student’s account and bill indicate the actual amount received. Students have the right to cancel all or part of the loan within 14 days after disbursement. Students interested in canceling or reducing their loan must notify the Student Financial Aid Office in writing. The correspondence must be received in the Student Financial Aid Office within fourteen days from the date of the bill; otherwise, the loan will remain on the student’s account. If the loan is canceled, the student is responsible for any outstanding account balance.

Adjustment to an Award – Financial aid budgets and awards will be adjusted for graduate students enrolled less than nine (9) hours. Adjustments will be based on the hours enrolled as of the census date. If adjustments are made and the student has received a refund, the student will be responsible for any balance due to the University.

Teacher Certification – Students working on Teaching Certification only are eligible to receive a Federal Direct Student Loan provided the student is enrolled in at least six (6) credit hours. The loan can only be awarded at the undergraduate fifth year level. Students can only borrow at the fifth grade level only twice. Students cannot exceed the aggregate maximum loan amount as an undergraduate student.

Revision or Cancellation of Aid - The Student Financial Aid Office reserves the right to revise or cancel the award because of changes in your financial or academic status or if you receive additional financial assistance. The submission of false or misleading information will be considered immediate grounds for cancellation of aid. If you receive additional scholarships or loans that cause your award to exceed need or the cost of attendance at the University, your financial aid award will be reduced or canceled to prevent the over-award or over-budget.
Withdrawals - Students withdraw from the University for various reasons. Students withdrawing from the University should follow the withdrawal procedure. The Federal Government has implemented a withdrawal policy for institutions. It is called the Return of Title IV Funds. If you receive financial aid and withdraw before the mid-point of the semester, you may be required to repay any refund received and other aid disbursed on your account. You will be notified, in writing, of the amount that must be repaid.

Summer School

Students interested in attending Summer School must complete a separate application and have a current year FAFSA on file. Graduate students generally receive only the Federal Direct Student Loan, if there is remaining eligibility. All students must attend the First Summer Session to be eligible for a Direct Loan. A student must enroll in at least five credit hours (halftime) to receive loan assistance. Students who are not maintaining satisfactory academic progress should attend summer school to remove the deficiency, but will not be eligible for financial assistance.

Satisfactory Academic Progress

Graduate Eligibility*

To be in compliance with the Satisfactory Academic Progress standards, graduate students must meet the following requirements to continue receipt of financial aid:

A. They must have a cumulative grade point average (gpa) of 3.0 or better at the end of each academic year.
B. If full-time, graduate students must earn 9 hours each semester.
C. If less than full-time, graduate students must pass all hours attempted during the semester.
D. They must not exceed 54 attempted hours. Majors in Counseling Education, Agency Counseling and Business and Industry must not exceed 90 attempted hours.
E. They must not exceed six semesters of full-time enrollment (full-time is 9 or more hours.)

Failure to earn the required hours and/or grade point average will result in the student being suspended from financial aid. Students can attend summer school to make up the deficiency; however, the student is responsible for payment of charges. Additional information on financial aid programs can be obtained from the University website (http://www.ncat.edu).

Immunization for Graduate Students

All full-time graduate students admitted to a degree program are required by State Law to submit a report of medical history and immunization documentation prior to completing their initial registration. North Carolina A&T State University students returning to the School of Graduate Studies must have their medical history file updated. The required immunizations must be submitted to the student health center before registration for classes. If this requirement is not met, dismissal from school is mandatory under state law. Students taking evening (after 5:00 p.m.) and weekend classes are not required to submit immunizations. The following immunizations are required by state law and are offered at the Student Health Center for the following cost:
North Carolina Immunization Requirement

Students born in 1957 or later, and 18 years of age or older

<table>
<thead>
<tr>
<th>DTP with Td or Tdap</th>
<th>Polio</th>
<th>Measles</th>
<th>Mumps</th>
<th>Rubella</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2 *</td>
<td>1 *</td>
<td>1 *</td>
</tr>
</tbody>
</table>

*A-DTP: One of these three must be a Td or Tdap booster within the last 10 years
*C- Measles: Both doses on or after 12 months of age (If attended 4 year college in United States prior to July 1, 1994 only 1 measles is required on or after 12 months of age)
*D- Mumps and Rubella: One dose of each on or after 12 months of age

Students born before 1957

<table>
<thead>
<tr>
<th>DTP with TD or Tdap</th>
<th>Polio</th>
<th>Measles</th>
<th>Mumps</th>
<th>Rubella</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>1 *</td>
</tr>
</tbody>
</table>

*A-DTP: One of these three must be a Td or Tdap booster within the last 10 years
*D-Rubella: One dose on or after 12 months of age

Students 50 years of age or older

<table>
<thead>
<tr>
<th>DTP with Td or Tdap</th>
<th>Polio</th>
<th>Measles</th>
<th>Mumps</th>
<th>Rubella</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

*A-DTP: One of these three must be a Td or Tdap booster within the last 10 years

Additionally, International students are required to have a TB skin test and negative result or chest x-ray.

GRADUATE STUDENTS ARE NOT REQUIRED TO HAVE A PHYSICAL EXAMINATION.
However, for new students who have been accepted, please complete the medical history form enclosed in your graduate admission packet, and return it to:

Sebastian Health Center
North Carolina A&T State University
Greensboro, North Carolina 27411
Attention: Medical Records

HEALTH SERVICES
http://wwwcat.edu/~health

The Director Services manages the Sebastian Health Center. Medical services are available to all students that have paid the student health fee as part of their general university fee.

The basic components of the Health Service Program are as follows:

1. Medical Services: The University Physician/s are on duty in the Health Center daily (hours for routine treatment are posted) — and “on 24 hour call” for emergency situations. A staff psychiatrist is also available by appointment.
2. **Nursing Services:** Under the direction of the Nurse Supervisor, registered nurses are in attendance daily to evaluate and treat health needs and answer any question pertaining to health problems and other concerns.

3. **Laboratory Services:** A Certified Medical Technologist is on duty Monday – Friday to perform various laboratory tests as ordered by the physician to diagnose a variety of medical problems.

4. **Medical Records:** The Medical Records Director is responsible for maintaining a secure and confidential file of all student health records in the Health Center. Additionally, the North Carolina State Immunization Law stipulates required vaccines must be on file in the medical records department of the Health Center prior to registration.

5. **Pharmacy Services:** A registered pharmacist is available Monday-Friday to dispense medication and provide patient counseling about prescriptions filled.

6. **Health Education Services:** Health education is available through the health educators on a variety of health concerns or issues. The Health Educators are available Monday-Friday to assist students with all health issues or concerns.

7. **Student Health Insurance:** The University requires graduate students in degree-seeking programs to be enrolled in major medical insurance. Students are automatically charged for the Student Health Insurance Plan when they register for classes and will need to complete an on-line waiver if they have their own health insurance. Students who do not have major medical insurance coverage will have to purchase the University Insurance Plan.

The Center provides up-to-date and emerging information on health related issues and concerns on a continuing basis for the University community.

INTERNATIONAL STUDENTS AND SCHOLARS OFFICE
International Students and Scholars Office
Room 221 Murphy Hall - (336) 334-7551 – (336) 256-2421-fax
www.ncat.edu/~isso
issso@ncat.edu

The International Students and Scholars Office (ISSO) provides programs, services and assistance to non-immigrants and immigrants who choose, and are admitted to pursue courses of study at North Carolina A&T State University. These services include:

- Issuance of the I-20/DS-2019 Certificate of Eligibility
- Pre-arrival assistance and information
- Arrival/adjustment assistance
- Housing information and contacts
- Insurance requirements
- Immigration status matters
- Permanent Resident, U.S. Naturalization, Resident Alien, and Asylum Verification

Orientation and status advisement are provided throughout the matriculation process in small groups and/or individual sessions. In cooperation with departments and organizations, including the International Students Association (ISA), the Office provides activities that enhance cultural, social, and personal development. The University also affiliates with local and national organizations promoting multicultural understanding and involvement in the Greensboro community. This exposure offers participation in a variety of activities and service related projects both on campus and within the City. Currently, over 130 international students attend the University and represent 50 countries.

All foreign born students applying to the University are required to verify their eligibility to enroll in the University. This requires that international applicants maintain close contact with the International Students and Scholars Office (ISSO) Local address changes during application and enrollment must also be updated and reported through SEVIS within 10 days for students in either F-1 or J-1 status.

The ISSO works closely with the graduate admissions process and will not issue the Certificate of Eligibility (I-20) to F-1 Status applicants nor the Certificate of Eligibility (DS-2019) to J-1 status applicants until all of the admissions requirements are met or waived. Certificates of Eligibility (I-20) and/or (DS-2019) issued by another institution are not valid at North Carolina A&T State University.

Certificates of Eligibility will be issued by the ISSO to prospective students prior to enrollment after the following have been satisfied:

1. Documentation of the TOEFL score (550 or above)
2. Transcript evaluation by an internationally approved credentials evaluation agency at the applicant’s expense
3. Receipt of certified financial guarantee documents (letter of support, bank statement,
and verification of salary from sponsor’s employer)
4. A deposit for the first year’s tuition and fees, including the cost of mandatory insurance coverage
5. Proof of valid immigration status if the applicant is currently residing in the United States
6. Transfer waiver if applicant is transferring to the University from within the United States
7. Financial guarantee at the rate of $6,000 for spouse and $4,000 for minor dependents, if a student is bringing them with him/her to the United States

Information regarding the Graduate Record Examination (GRE) and other admissions requirements are available through the School of Graduate Studies. Please refer to the University website, http://www.ncat.edu/~gradsch/, or call (336) 334-7920.

While attending North Carolina A&T State University, non-immigrants are required to maintain lawful status with the United States Citizenship and Immigration Service (USCIS) and the Department of State (DoS). Rules and regulations effective January 1, 2003 require that students at the graduate level:
 a. Enroll in and maintain a minimum of nine (9) semester hours (six if approved for an assistantship)
 b. Maintain a minimum grade point average of 3.0
 c. Complete all provisions for acceptance within the first semester or as required by the School of Graduate Studies
 d. Provide changes in status and address to the ISSO within 10 days of the change
 e. Attend required ISSO Orientation at the beginning of each semester
 f. Maintain mandatory insurance coverage for self and all dependents
 g. Complete registration and provide proof of enrollment and insurance coverage within 15 days after classes begin

Legal regulations governing non-immigrant students are complex. The ISSO is available to discuss implications and explain the impact of these regulations in detail. Orientation sessions will also be helpful in understanding USCIS and DoS regulations.

Scholarships are not usually available to non-immigrant applicants; however, students may contact the academic department to which they have applied to determine the availability of assistantships or scholarships. Availability is highly competitive and interested candidates should make contact immediately. Scholarships are not available through the ISSO.

International students are classified as non-residents of North Carolina and are assessed non-resident (out-of-state) tuition and fees.

F-1 non-immigrants are not eligible to work off-campus without an approval from the U.S. Citizenship and Immigration Services. It is also necessary to apply for a Social Security number and card which could take up to two months to process and be received. Work on campus, after the Social Security card has been received is a possibility and requires that international students maintain legal status at all times. F-2 and H-4 non-immigrants are not eligible to work. J-2 dependents can apply to the USCIS for work authorization. Students should contact the ISSO regarding eligibility to work after enrolling in classes.

The ISSO is located on the corner of Nocho Street and S. G. Thomas Drive in Room 208 Murphy Hall. Phone (336) 334-7551, Fax (336) 256-2421. Please visit the webpage at www.ncat.edu/~isso. The e-mail address is isso@ncat.edu.

Non immigrant students are required to maintain comprehensive health and accident insurance coverage that includes repatriation and medical evacuation. Students must purchase insurance on a semester basis during registration through the University. Government sponsored students should consult the ISSO advisor immediately regarding coverage. Non-immigrant students who fail to provide proof of adequate insurance by the end of the regular registration period will be considered out of status.

This school is authorized under Federal Law to enroll nonimmigrant students.

GRADUATE PROGRAMS

The School of Graduate Studies offers programs of study leading to the master’s degree in 56 fields and the doctorate in six fields. Each student’s program is planned with an advisory committee of graduate faculty members to provide the opportunity for gaining advanced
knowledge in the particular field of study. Graduate education is the final stage in the development of intellectual independence. It is different from undergraduate education in that the student is encouraged to establish premises, to hypothesize, and to defend both the procedure and the conclusions of independent investigation. The burden of proof for the verifiability of knowledge rests on the student, not on the faculty member. Emphasis is placed upon the student’s scholarly development through formal course work, seminars, research, and independent investigation.

Graduate students are expected to familiarize themselves with the requirements for the degrees for which they are candidates and are held responsible for the fulfillment of these requirements.

Master’s Degrees

The School of Graduate Studies offers programs of study leading to the Master of Science degree, the Master of Arts degree, Master of Education, Master of Science in Industrial Technology degree and the Master of Social Work degree.

Requirements for Master’s Degrees

Graduate Advisor and Graduate Advisory Committee

All students in master’s programs must have a graduate advisor who is a member of the Graduate Faculty in the student’s major department or program. The graduate advisor is appointed by the Coordinator of Graduate Programs. In addition, all students must have a graduate advisory committee. The advisory committee is composed of at least three members of the Graduate Faculty. The graduate advisor serves as chair or co-chair of the committee. The graduate advisory committee is appointed by the Coordinator of Graduate Programs in the student’s department or program. At the time of the request for a permit to schedule the final oral examination, the School of Graduate Studies verifies that the committee is properly constituted.

Plan of Graduate Work

The master’s degree candidate must submit an approved Plan of Graduate Work to the School of Graduate Studies during the term in which the candidate will complete 15 or more credits toward the degree sought. If the 15 credits will be completed at the end of a regular semester, the Plan of Graduate Work must be submitted to the School of Graduate Studies Office five working days before registration for the following semester. If the 15 credits will be completed at the end of the summer session, the Plan of Graduate Work should be filed in the School of Graduate Studies within five working days following fall registration. The Plan of Graduate Work lists the committee chairperson, other committee members, and a sequence of courses required for the degree and approved by the student’s advisor. Each committee member’s signature indicates approval of the Plan of Graduate Work. Upon approval by the School of Graduate Studies, the Plan becomes the student’s official guide to completing his/her program. Any changes in the Plan of Graduate Work or exceptions to the schedule for submission of the Plan must be approved by the committee and the Dean of the School of Graduate Studies.

Declaration of Major

A graduate student shall declare and complete the requirements of one master’s degree program before declaring another major. This does not prevent a student from changing a declaration of major.

Time Limitation

The master’s degree program must be completed within six successive calendar years. Programs remaining incomplete after this time interval are subject to cancellation, revision, or special examination for out-dated work. Students enrolled in doctoral programs (Electrical, Industrial and Systems, and Mechanical Engineering) should see the appropriate section of the *Graduate Catalog* for details regarding the maximum time allowed to complete the degree programs. When the program of study is interrupted because the student has been drafted into
the armed services, the time limit shall be extended for the length of time the student shall have been on active duty, if the candidate resumes graduate work no later than one year following his/her release from military service.

Course Levels

At the University, the department prefix, followed by a three-digit number, is used to designate all course offerings. The first digit indicates the classification level of the course. Courses numbered 600 through 699 are open to seniors and to graduate students. Courses numbered 700 and above are open only to graduate students. At least 50% of the courses counted in the work towards a master’s degree must be those open only to graduate students; that is, numbered 700 and above.

Credits

A minimum of 30 semester credit hours is required for most master’s degrees; however, some programs require more than 30. Also, in order to gain the breadth desired in their program or to make up deficits in their undergraduate degree, many students will actually take more credit hours than the minimum required by the program.

Residence Requirements

A minimum of three-fourths of the hours required for the master’s degree must be earned in residence study at the University.

Transfer of Credit

No more than six hours of the minimal 30-hour requirement will be accepted from other institutions. A graduate course which has been completed with a grade of “B” or better may be considered for transfer to a master’s program provided that it has been completed in a graduate or post-baccalaureate classification at an accredited graduate school. Exceptions are allowed for transfer from foreign institutions if the department or program provides the School of Graduate Studies with adequate documentation that the course is relevant to the degree, with appropriate content and level of instruction resulting in student competencies at least comparable to those of students taking the equivalent course at North Carolina A&T State University, and that the course was taught by faculty who are qualified to teach at the master’s degree level. Credit accepted by extension reduces the amount of credit that may be transferred from other institutions.

Transfer of Undergraduate Credit

Graduate credit may be allowed for up to 6 hours of the minimal 30-hour requirement for courses taken at North Carolina A&T State University provided that it is at the 600 graduate level or higher, that the grade is “B” or better, that it was not counted to fulfill undergraduate requirements, and that it is recommended by the student’s undergraduate advisor prior to enrollment in the course. No graduate credit will be allowed for excess credits completed in an undergraduate classification at another institution.

Credits from Previous North Carolina A&T State University Master’s Degree

Only 12 credits from a previous North Carolina A&T State University master’s degree may be counted toward the minimal 30-hour requirement.

Language Requirements

A reading knowledge of one foreign language is required by some programs for the Master of Arts and the Master of Science degrees. Other departments may designate that the language requirement be fulfilled from among those languages in which the Department of Foreign Languages conducts testing. Students should contact the major department for specific language requirements.

Thesis
Theses prepared by candidates for the Master of Science and Master of Arts degrees, in programs requiring the thesis, must present an original investigation into a subject which has been approved by the student’s advisory committee and the Coordinator of Graduate Programs in the student’s major. Four copies of the thesis in final form as approved by the advisory committee, each signed by the members of the advisory committee, must be submitted to the School of Graduate Studies by a specific deadline in the semester or summer session in which the degree is to be conferred. Detailed information on the form and organization of the thesis is presented in the Graduate School’s Thesis and Dissertation Manual, which is available in the School of Graduate Studies Office or on the website at http://www.ncat.edu/.

Final Comprehensive Examination

Students enrolled in a master’s degree program or a doctoral degree program may be tested by a comprehensive examination to determine the student’s knowledge and skills in a general subject area of concentration. The comprehensive examination date will be announced by the departmental graduate committee chairperson at the beginning of the semester. This examination will be administered to the enrolled student by an examining committee of the department. Eligibility to sit for the examination will be determined by the departmental graduate committee and the results of the examination will be forwarded to the School of Graduate Studies no later than 30 days prior to the end of the semester. Students may only take the comprehensive examination twice.

After a second failure, the student must petition the Coordinator of Graduate Programs and the Dean of the School of Graduate Studies for approval to take the exam a third time. If the student is unsuccessful after the third attempt, the student is dismissed from the Graduate Program.

Comprehensive Final Oral Examination

Candidates for master’s degrees must pass a comprehensive oral examination to demonstrate to the advisory committee that he/she possesses a reasonable mastery of the subject matter of the major and supporting fields and that this knowledge can be used with promptness and accuracy. This examination may not be held until all other requirements, except completion of the course work in current registration during the final semester, are satisfied. A request for a permit to schedule the examination may be filed with the Dean of the School of Graduate Studies after the above conditions are met. The School of Graduate Studies will check to determine that the advisory committee and the courses taken by the student meet the requirements. If all requirements are met, the permit to schedule the final examination will be forwarded to the Director of Graduate Programs within 20 days of receipt of the request. Upon receipt of the permit, the student may proceed to schedule the exam at a time that is convenient to all members of the advisory committee. In those programs that require the thesis, the thesis must be submitted in complete form, except for such revisions necessary as a result of the final exam, to all members of the advisory committee at least two weeks prior to the exam.

A unanimous vote of approval of the advisory committee is required to pass the oral examination. Approval of the examination may be conditional, however, upon completion of additional work to the satisfaction of the advisory committee. A formal reexamination will not be required in this case. Failure of a student to pass the oral examination terminates the student’s graduate work at North Carolina A&T State University, unless the graduate advisory committee unanimously recommends a reexamination. Only one reexamination will be given. A form giving the date that the exam was conducted and the result of the examination, signed by all members of the advisory committee, is forwarded to the Dean of the School of Graduate Studies by the Coordinator of Graduate programs in the student’s department or program. A student may appeal all committee actions by written application to the Dean of the School of Graduate Studies.

Oral examinations for master’s degree candidates are open to the Graduate Faculty by right and to the University community by unanimous consent of the advisory committee and the student being examined. Discussions and decisions regarding the student’s performance are private to the advisory committee.

Summary of Procedures for Master’s Degrees
ALL STUDENTS

- Application materials and required fees must be received.
- Application materials must be reviewed by department or program.
- The department or program must forward its recommendation regarding applicant’s admissibility to the Dean of the School of Graduate Studies.
- The School of Graduate Studies must review the recommendation and the student is notified of the action taken on the request for admission.
- The student must report to the department or program, be assigned a graduate advisor, and develop a roster of courses and credits with the advisor.
- The student must comply with requests from the School of Graduate Studies for updated copies of transcripts from previous colleges or universities.
- The student must sign a patent agreement and file with the School of Graduate Studies.
- The student is subject to continuous registration policy until graduation.
- The student must pass a language examination, if required.
- The student must pass a written examination, if required.
- The student must submit a diploma order form by end of the sixth week of the semester or summer session of anticipated graduation.
- An overall grade point average of at least 3.0 must be maintained for all graduate coursework taken at North Carolina A&T State University to graduate.

All degree requirements must be completed within six calendar years, beginning with the date the student commences courses carrying graduate credit applicable to the degree program, unless a more restrictive time limit has been established by the department/program or academic college/school.

Students in Non-Thesis Programs

- A graduate advisory committee of three or more Graduate Faculty members must be appointed by the Coordinator of Graduate Programs.
- A Plan of Graduate Work must be prepared by the student, in consultation with and with the approval of his/her graduate advisory committee. This plan must be approved by the Coordinator of Graduate Programs prior to completion of one-half the credits on the plan.
- When all requirements except completion of the course work in the final semester are satisfied, the Coordinator of Graduate Programs must request that the School of Graduate Studies issue a permit to schedule the final oral examination.
- If the School of Graduate Studies requirements are met, a permit to schedule the final examination will be issued within 20 working days of receipt of the request.
- The final examination must be scheduled and conducted.
- The final examination report, including date and result of the examination, must be submitted to the School of Graduate Studies by the Coordinator of Graduate Programs. This report should be received within five working days of the examination.

Students in Thesis Programs

- A graduate advisory committee of three or more Graduate Faculty members must be appointed by the Coordinator of Graduate Programs.
- A Plan of Graduate Work must be prepared by the student, in consultation with and with the approval of his/her graduate advisory committee. This plan must be approved by the Coordinator of Graduate Programs prior to completion of one-half the credits on the plan.
- A copy of a preliminary draft of the thesis, if required, must be submitted to the chair of the student’s advisory committee.
- When all requirements except completion of the course work in the final semester are satisfied and after the thesis is complete except for such revisions as may be necessary as a result of the exam, the Coordinator of Graduate Programs will request that the School of Graduate Studies issue a permit to schedule the final oral examination.
- If all requirements are met, a permit to schedule the final examination is issued by the School of Graduate Studies within 20 working days of receipt of the request.
- At least two weeks prior to the final oral examination, the chair of the student’s advisory committee must submit the thesis to the other members of the advisory committee for review.
- The final examination must be scheduled and conducted.
- The final examination report, including the date and result of the examination, must
be submitted to the School of Graduate Studies by the Coordinator of Graduate Programs. The report should be received by the School of Graduate Studies within five working days after the examination.

• The student must submit four copies of the thesis, signed by each member of his/her advisory committee, to the School of Graduate Studies.
• The deadline date for submitting four copies of the thesis to the School of Graduate Studies for the student to graduate in a given semester or summer session appears in The Academic Calendar in this catalog as well as in other School of Graduate Studies calendars.
• The defended thesis is reviewed by the School of Graduate Studies to ensure that the format conforms with the specifications prescribed in the Thesis and Dissertation Manual.

Requirements for Doctor of Philosophy Degree

The doctorate symbolizes the ability of the recipient to undertake original research and scholarly work at the highest levels without supervision. The degree is, therefore, not granted simply upon completion of a stated amount of course work but rather upon demonstration by the student of a comprehensive knowledge and high attainment in scholarship in a specialized field of study. The student must demonstrate this ability by writing a dissertation reporting the results of an original investigation and by passing a series of comprehensive examinations in the field of specialization.

Advisory Committee and Plan of Graduate Work

An advisory committee of at least four Graduate Faculty members, one of whom will be designated as chair, will be appointed by the Dean of the School of Graduate Studies upon the recommendation of the Chairperson of the department. The committee, which must include at least one representative of the minor field, will, with the student, prepare a Plan of Graduate Work that must be approved by the department and the School of Graduate Studies. In addition to the course work to be undertaken, the subject of the student’s dissertation must appear on the plan. Any subsequent changes in the committee or dissertation subject or in the overall plan must be submitted for approval as with the original plan. The program of study must be unified, and all constituent parts must contribute to an organized program of study and research. Courses must be selected from groups embracing one principal subject of concentration, the major, and from a cognate field, the minor.

Residence Requirement

For the Doctor of Philosophy degree, the student is expected to be registered for graduate work at an accredited graduate school for at least six semesters beyond the baccalaureate degree.

The basic University residence requirements are defined below. However, the College of Engineering has the prerogative of establishing more restrictive requirements within the respective programs.
Language Requirement

The departments may designate that the language requirement be fulfilled from among those languages in which the Department of Foreign Languages and Literatures conduct testing. Doctoral students should contact the major department for specific language requirements.

Preliminary Comprehensive Examinations

After completing the language requirement, but not earlier than the end of the second year of graduate study, and not later than one semester (four months) before the final oral examination, each doctoral student is required to take the preliminary comprehensive examination. The examinations consist of two parts: written examination and an oral examination.

The written portion may be conducted in one of two ways. In the first, each member of the advisory committee prepares a set of questions for the student’s response, and answers to each set are returned to the appropriate member for grading. In the second, the Department prepares a single exam that is graded by a faculty committee.

The examination questions involved may cover any phase of the course work taken by the student during graduate study or any subject logically related to an understanding of the subject matter in the major and minor areas of study. The questions are designed to measure the student’s mastery of the subject matter and the adequacy of preparation for research. Failure to pass the written preliminary examination terminates the student’s work at this institution, subject to departmental and/or school policies with respect to reexamination.

Upon satisfactory completion of the written portion of the preliminary examinations and after completion of all course work relevant to the examination, authorization for the preliminary oral examination is requested from the School of Graduate Studies. This examination is conducted by the student’s advisory committee and a representative from the School of Graduate Studies and is open to all Graduate Faculty members. The oral examination is designed to test the student’s ability to relate factual knowledge to specific circumstances, to use this knowledge with accuracy and promptness, and to demonstrate a comprehensive understanding of the field of specialization and related areas.

A unanimous vote of approval by the members of the advisory committee is required for the student to pass the preliminary oral examination. Approval may be conditional, however, on the successful completion of additional work in some particular field(s). All committee actions may be appealed by written application to the Graduate Dean.

Failure to pass the preliminary oral examination terminates the student’s work at the University unless the examining committee recommends a reexamination. No reexamination may be given until at least one full semester has elapsed, and only one reexamination is permitted.

Candidacy

A doctoral student is admitted to candidacy upon passing the preliminary examinations without conditions or after fulfilling any conditions specified by the advisory committee.

Qualifying Examination

This is a written examination that is required of all Ph.D. students and is scheduled each semester. The qualifying examination must be passed prior to the end of the third semester. Provisional students cannot sit for the qualifying examination. They must first gain a status change to unconditional admission. Students should consult the departmental handbook for details.

Preliminary Examination

The preliminary examination is given in the semester following completion of all required coursework. In this oral examination, the student is asked about graduate course work and subject matter related to the specialization. It is also a presentation and defense of the proposed dissertation topic. Students should consult the departmental handbook for details.
Admission to Candidacy

Admission to candidacy is given once the student has completed and passed all parts of the preliminary examination. Students should consult the departmental handbook for details.

Final Oral Examination

The final oral examination is scheduled after the dissertation is complete. It consists of the defense of the methodology used and the conclusion reached in the research. Students should consult the departmental handbook for details.

Dissertation Submission

The doctoral dissertation presents the results of the student’s original investigation in the field of major interest. It must be a contribution to knowledge, must be adequately supported by data and must be written in a manner consistent with the highest standards of scholarship. Publication is expected.

Upon passing the Ph.D. final oral examination, each Ph.D. student must have the dissertation approved by each member of the student’s advisory committee. The defended dissertation must be submitted to the School of Graduate Studies by the deadline given in the academic calendar, and must conform to the School of Graduate Studies’ Thesis and Dissertation Manual, a copy of which may be obtained from the School of Graduate Studies Office. Once final approval is granted, four copies of the document signed by all members of the student’s advisory committee must be submitted to the School of Graduate Studies by a specified deadline in the semester or summer session in which the degree is to be conferred.

The University has a requirement that all doctoral dissertations be microfilmed by University Microfilms International of Ann Arbor, Michigan, which includes publication of the abstract in Dissertation Abstracts International. The student is required to pay for the microfilming service.

Residence Requirement and Doctor of Philosophy Time Limit

Two semesters of residence credits must be earned. In addition, the doctoral student has a maximum of six calendar years from admission to attain candidacy and ten calendar years to complete all requirements. The dissertation must be completed in five years after admission to candidacy. Students should consult the departmental handbook for details.

Credit Completion Requirements

A minimum of 24 course credits and 12 dissertation credits beyond the Master of Science are required. Students should consult the departmental handbook for details.

Interinstitutional Doctor of Philosophy Program

North Carolina A&T State University, North Carolina State University and the University of North Carolina at Charlotte all participate in an interinstitutional Ph.D. program. Students seeking admission to such a cooperative program must satisfy all admission and degree requirements at the university where the Ph.D. will be issued as well as those of the student’s home institution. Details are available at each of the departments involved in the interinstitutional Ph.D. program.

Summary of Procedures for Doctor of Philosophy

• Application materials and the required fee are received.
• Application materials are reviewed by the department or program.
• The department or program forwards its recommendation regarding applicant’s admissibility to Dean of the School of Graduate Studies
• The School of Graduate Studies reviews the recommendation and notifies the student of the action taken on the request for admission.
• The student arrives, reports to the department or program, is assigned a graduate
advisor, and develops a roster of courses and credits with the advisor.
• The student complies with requests from the School of Graduate Studies for updated copies of transcripts from previous colleges or universities.
• The student is subject to the continuous registration policy until graduation.
• An advisory committee of at least four graduate faculty members is appointed by the Dean of the School of Graduate Studies upon the recommendation of the coordinator of graduate programs.
• The Dean of the School of Graduate Studies appoints a representative to the student’s committee.
• A dissertation subject is selected and an outline of the proposed research submitted to the student’s advisory committee and the coordinator of graduate programs for review and approval. A Plan of Graduate Work is prepared by the student, in consultation with and with the approval of his/her graduate advisory committee and the coordinator of graduate programs, and forwarded to the School of Graduate Studies for approval as soon as feasible after completion of 12 hours of course work.
• Written examinations in the major and minor fields are scheduled no earlier than the end of the second year of graduate study and not later than one semester before the final oral examination.
• When all written examinations have been completed satisfactorily, the chair or the coordinator of graduate programs requests the scheduling of the preliminary oral examination at least two weeks prior to the suggested date.
• The report of the examination is sent to the School of Graduate Studies and if, the examination has been passed without conditions, the student is admitted to candidacy.
• A copy of the preliminary draft of the dissertation is submitted to the chair of the student’s advisory committee for review.
• At least two weeks prior to the final oral examination, the chair of the student’s advisory committee submits the dissertation to advisory committee members for review. A copy is submitted to the School of Graduate Studies representative at least one week prior to the exam.
• One semester or its equivalent after admission to candidacy or later, after the dissertation is complete except for such revisions as may be necessary as a result of the final examination, and at least two weeks prior to the suggested date, the student’s advisory committee chair or the director of graduate programs requests the scheduling of the final oral examination. Upon approval of the request, the student and the examining committee, including the Graduate School representative, are notified of the time and place of the examination.
• Results of the final oral examination are forwarded to the School of Graduate Studies.
• Upon the student’s passing the final oral examination, four copies of the dissertation signed by each member of the student’s advisory committee and five copies of the abstract must be submitted to the Graduate School by a specific deadline in the semester or summer session in which the degree is to be conferred. One copy each of the University Microfilms Agreement, the Survey of Earned Doctorate, and the Graduate School Exit Survey forms must be completed and submitted with the dissertation.
• The defended dissertation is reviewed by the School of Graduate Studies to ensure that the format conforms to the specifications prescribed in the Thesis and Dissertation Manual.
• All course work scheduled in a graduate degree classification must be completed prior to graduation.
• A grade point average of at least 3.0 for the degree requirements as well as on overall graduate course work at North Carolina A&T State University is required for graduation.
• The doctoral residence requirement must be satisfied. All degree requirements must be completed within ten years from admission to the doctoral program.
The Ferdinand Douglass Bluford Library is located near the center of the West campus. The current holdings include more than 566,000 bound volumes, over 34,000 e-books, and as a select depository in North Carolina for United States government documents, the library contains a collection of over 276,000 official government publications. Current serials include approximately 40,089 print and electronic subscriptions. Other holdings include a collection of videotapes, microforms and other audiovisuals. The library maintains special collections in Archives, Black Studies and Teacher Education materials.

Special services are provided through a formal and informal library instructional program, document delivery, interlibrary loans, and laptop checkouts. During the academic year, the library is open each week as shown below. Variations in this schedule are posted at the front entrance of the library.

Sunday – 2:00 p.m. with 24-hour service until Friday, 8:00 p.m.
Saturday – 10:00 a.m. – 7:00 p.m.

OFFICE OF SUMMER SESSIONS AND OUTREACH

The Summer Sessions are an integral part of the regular University program and are administered by the regular staff augmented in several fields by visiting faculty. The standards of academic achievement, including the courses and the quality of work required in them, are maintained at the same level as during the regular terms. Credits obtained and times spent are recognized fully toward meeting residence requirements for graduation.

Students interested in attending a Summer Session must complete a separate application and have a current year FAFSA on file. Students generally receive the Pell Grant and/or the Federal Direct Student Loan, if there is remaining eligibility. All students must attend the first, dual sessions or first and second sessions to be eligible for aid. A student must be enrolled at least half-time to receive loan assistance.

The Summer Sessions consist of two 5-week sessions, one 10-week session and one two-week session, with short courses and workshops offered at various times throughout the sessions. This program provides daily summer study to meet the needs of graduate and undergraduate degree-seeking students, teachers, and other professionals, or any other persons whom summer study will benefit in the attainment of their educational goals. Persons who have not been accepted into the School of Graduate Studies, but wish to take courses in a Summer Session, must complete an application and pay the application fee before registering for the course.

The Outreach component seeks to provide a broad base of support, through collaborative initiatives with the various units on the campus, for pre-college activities for youth that support learning, discovery and engagement in the greater university community. The Office partners with public and private schools in and around the Greensboro area in order to support teacher training and promote interdisciplinary learning experiences at all levels.

OFFICE OF CONTINUING STUDIES

The Office of Continuing Studies provides the administrative structure and coordination of extension credit courses, conferences, workshops, and short courses. The staff works with faculty and community groups to develop learning activities to meet the educational needs of individuals or groups. Special emphasis is given to technical certification programs leading to certification in several fields.
MAJOR RESEARCH CENTERS AND INSTITUTES

• Center for Advanced Materials & Smart Structures- Dr. Jag Sankar, Director (College of Engineering)

The Center for Advanced Materials and Smart Structures (CAMSS) is an educational and research resource for the State of North Carolina and the nation in the field of advanced ceramic materials and their composites. It is a collaboration of academe, private industry and the government in developing basic and applied research programs with a focus on an integration of research and education. The Center's interdisciplinary and integrated approach to providing a rich collection of outcomes for the institutions involved and for the four engineering infrastructure in general. Basic research in the technical thrust areas (advanced ceramics, advanced composites, electronic ceramic devices, sensors and smart structures and III-V nitrides, ohmic contracts and devices) drives the Center's activities.

For more information, visit http://camss.meen.ncat.edu/camss/index.html or call (336) 256-1151.

• Center for Autonomous Control & Information Technology- Dr. Abdollah Homaifar, Director (College of Engineering)

The areas of concentration are soft computing, multi agent systems, artificial intelligence in general, control theory, genetic algorithms, and energy conservation and power electronics. The Center conducts interdisciplinary research in demonstrative programs for the application of fuzzy logic-controlled power electronic building block systems in HVAC systems, nonlinear active control of dynamical systems, artificial potential field based motion planning/navigation in two- and three-dimensional dynamic environments, and other relevant topics. For more information, call (336) 334-7761.

• Center for Composite Material Research- Dr. Kunigal Shivakumar, Director (College of Engineering)

Research with polymeric-based composite materials at North Carolina A&T State University was started in 1976. The present Center was established in 1988 formally as a center of excellence in composite materials.

The major facilities are the Computational Laboratory, Mechanical Testing Laboratory, Diagnostic Laboratory, and Composite Processing and Fabrication Laboratory.

Research activities are focused on processing and fabrication of simple to complex composite components (autoclave, compression molding, resin transfer molding, and composite structural components); use of textile fiber architectures in the fabrication of non-trivial light weight composite components (braids, plain weaves, etc.); testing and characterization of composite materials; analysis of composite structural components; study of cost-effective near net-shaped composite components; development of innovative processing techniques with textile fabrics (small ablative nozzles, integrally blade-stiffened panels, box sections, etc.); and training of students and engineers from industry in the fabrication and use of composites.

For more information, visit http://www.ncat.edu/~ccmradm/ccmr or call (336) 334-7411.
• **Center for Cooperative Systems – Dr. Yong-Duan Song, Director (College of Engineering)**

The mission of the Center for Cooperative Systems (COS) is to perform high-impact research in aerospace, space exploration and biomimetics. The Center's main focus is on the analysis, design, and simulation of advanced cooperative systems technologies for making current and future aerospace transportation more affordable, more efficient and more reliable.

The center's major function is to provide a home across departments for faculty and students interested in cooperative systems engineering methodologies and their relevance to application domains encompassing the analysis, design, management and simulation of complex cooperative systems.

• **Center for Energy Research & Technology – Dr. Harmohindar Singh, Director (College of Engineering)**

The mission of the Center is to enhance undergraduate and graduate education through energy-related research and to transfer this new knowledge to regional and national industries.

The objective is to improve economic competitiveness while reducing the environmental impact that results from excessive energy consumption. The research focuses on energy use and energy efficiency in buildings and industrial processes as they relate to technological, economic, political and environmental issues. For more information, visit http://cert.ncat.edu/ or call (336) 334-3566.

• **Center for Human Machine Studies – Dr. Celestine Ntuen, Director (College of Engineering)**

The field of human-machine system engineering emphasizes how users interact with machines, how usable machines are to users, and the impact of machines on user performance.

The Institute is a comprehensive multi-disciplinary program of basic and applied scientific research and technology development directed toward the understanding of the nature of human performance while interacting with complex technology-driven systems. It focuses on cognitive engineering and human-system interface sciences, aviation and transportation human factors, information and communication technology integration, and healthcare and manufacturing applications. For more information, visit http://gandalf.ncat.edu/ihms or call (336) 334-7780.

• **Interdisciplinary Center for Entrepreneurship & E-Business – Dr. Thaddeus McEwen, Director (School of Business)**

The Interdisciplinary Center for Entrepreneurship and E-Business (ICEEB) is dedicated to developing the entrepreneurial spirit at North Carolina A&T State University.

The ICEEB provides academic and experiential learning experiences for students interested in individual or corporate entrepreneurship, and for local entrepreneurs interested in improving their businesses. The center's main goals are to promote entrepreneurship as a career option, increase student participation in e-business, provides an entrepreneurial environment and opportunities for students to successfully start their entrepreneurial careers, and encourage and support research in entrepreneurship and e-business.

ICEEB is a joint project of the School of Business and Economics, the School of Agriculture and Environmental Sciences, and the School of Technology. Located in the School of Business and Economics, the center collaborates with various schools and colleges to offer students the Certificate in Entrepreneurship, an Entrepreneurship Mentoring Program, a Virtual Incubator, a Business Plan Competition, the Entrepreneurial Internship, and a Lecture Series.

For more information, visit http://www.ncat.edu/~iceeb or call (336) 334-7656.
• International Trade Center- Dr. Osei Yeboah, Director (School of Agriculture)

The primary mission of the Center is to stimulate economic development and international trade. The educational activities are principally aimed at teaching students and providing research and related materials to small businesses as well as technical assistance and information to the agricultural business community.

Program emphases include developing educational programs to enable farmers and processors to produce a broader range of products to boost local economic performance; identifying alternative markets; enhancing understanding of the linkages among national economies, world markets, and agriculture; conducting market-based research to understand factors that influence competitiveness; educating producers, processors, and other clients about trade policies, regulations, and world economic and political trends affecting U.S. trade competitiveness; and developing programs of North Carolina’s rural communities to enhance entrepreneurial skills, create jobs, and diversify their economies.

For more information, visit http://www.ag.ncat.edu/centers/int-trade/ or call (336) 334-7979.

• Interdisciplinary Scientific Environmental Technology Cooperative Science Center- Dr. Solomon Bililign, Director (College of Arts & Sciences)

On September 1, 2006 the NOAA Interdisciplinary Scientific Environmental Technology (ISET) Cooperative SCIENCE Center lead by North Carolina A&T State University began operation as part of the NOAA Educational Partnership Program.

The NOAA ISET Center will help contribute to the NOAA vision of a future in which decisions and actions for the benefit of humankind are informed by coordinated, comprehensive, and sustained Earth observations and information. Credible and specific weather and climate predictions provide the foundation for good public policy. For more information, visit http://www.ncat.edu/~iset/ or email ISET@ncat.edu.

THE DIVISION OF INFORMATION TECHNOLOGY AND TELECOMMUNICATIONS

The Information Technology and Telecommunications division is organized into fifteen collaborative operating units and departments. The Office of the Vice Chancellor for ITT/CIO, the Office of the Chief ITT Architect, the Office of ITT Operations/CTO and its eight departments, and the Office of Teaching and Learning Technologies and its three departments.

1) **Office of the Vice Chancellor for ITT/CIO** – The Office of the Vice Chancellor for Information Technology and Telecommunications/Chief Information Officer is responsible for supporting and strengthening the University’s learning, discovery, and engagement activities by providing the leadership and management guidance of central services and infrastructure characterized by operational excellence. All ITT operating units and departments report to this office.

2) **Office of the Associate Vice Chancellor for ITT/CTO** – The ITT Operations Unit is responsible for managing eight of the eleven ITT departments. These departments plan, install, monitor and support the University’s information technology and telecommunications infrastructure. The ITT Operations cluster is led by the Associate Vice Chancellor for ITT/Chief Technology Officer. The eight departments that report to the ITT Operations Unit are managed by directors.
a. **Administrative Information Systems (AIS)** – AIS provides software development, project management, and application software technical support for the systems that support administrative processes related to the mission critical functions of the University. The AIS vision is to develop and support a community of knowledge workers (students, teachers, researchers, staff and administrators). They focus on easy access to secure, reliable and timely data, retaining quality staff and partnering with others to provide technical leadership and effective solutions.

b. **Data Base Administration (DBA)** – The mission of the DBA department is to create and support databases for the University; and to ensure the highest possible level of database availability and performance. The DBA department supports databases for the Banner Project, the Resource 25 System, and the Residential Management System. In addition to database support, the DBA department also provides application support for the following systems: Resource 25, Residential Management, Aggie One Card, Web Focus, Telephone Reporting, Traffic, and the Library System.

A vital role of the DBA department is to perform database backup and recovery, database monitoring, and database tuning. The department also provides database consultation and assistance as needed.

c. **Converged Networks (CN)** – CN has the responsibility to provide the networking infrastructure and services that will enable the integration of data, voice and video on the University network. Convergence will require a complete migration of the infrastructure to enable this integration.

 New Cisco centric hardware and network management software are being purchased to enable this convergence. CNS has also been charged with providing Distance Learning Technical Support for the University. CNS also provides streaming media support for WNAA and the Aggie TV Studios as well as several on-line classes.

 Converged Network Video Service has enabled the University to experience new opportunities by utilizing the power of information technology to create, support, and manage physical and intellectual resources. By utilizing a combination of microwave, H.320, H.323, MPEG, streaming, and emerging technologies NC A&T State University is now in the position to deliver distance learning programs to anywhere in the world.

 The Converged Telecommunications Services department is responsible for managing all voice services and voice related applications for the University, faculty, staff, and student populations. The mission of Telecommunication Services is to provide effective and efficient voice products and services to NC A&T State University.

d. **Research Computing, Academic Labs, Student Technology Services (STS)** – The goal of Research Computing is to establish a research infrastructure that maximizes and leverages the usage and deployment of computer hardware and software at the university.

 Academic Labs exists to maintain and provide a productive accessible environment for students (and faculty) to accomplish their work.

 Student Technical Services (STS) provides a student run organization that supplies student resources to technical areas around campus to enhance the student learning and to supply critical resources that supplement existing ITT employees and non-student workers.

e. **Security and Audits (SA)** – The mission of IT Security and Audits is to provide guidance relevant to making information technology resources accessible for appropriate academic and administrative purposes, yet secure from inappropriate intrusion or usage. This will be achieved by engaging the campus community in security education and end user audit compliance with university policies. This department monitors adherence to federal and state legislation regarding information technology.

f. **Special Projects and Programs (SPP)** – SPP provides support for the Division of Business and Finance, Financial Records Systems (FRS) and other special projects Programs as they arise. FRS is a critical part of the SCT-centric ERP system.
g. **Systems and Support (SS)** – is responsible for the technical support of the ITT infrastructure: back office systems, storage and computing systems configurations, maintenance, performance, and general operations.

Systems and Support provides consulting services and information technology support to University faculty, staff, students, and external stakeholders. The Aggie Help Desk is the centralized point of contact for initiating or receiving status updates and requests. The Aggie Help Desk coordinates the support and services provided by all departments in the Division of Information Technology and Telecommunications.

h. **The Department of Web Support Services (WSS)** – The WSS department was created to provide support for the development, implementation and maintenance of the front-end portal and web interface for the ITT infrastructure. WSS is responsible for establishing website and portal policies, processes, procedures and standards for assisting the campus learning community with website management and development for publication, communication and collaboration. WSS communicates information on courses of study, faculty and student research, schedule of activities and outreach programs to potential students, researchers, corporate partners and other visitors. WSS also provide support for Internet, Intranet and Extranet design to facilitate such activities as post grades, course schedules, lesson plans, and other documentation critical for students, faculty and staff web-based learning, discover and engage.

3) **Office of the Assistant Vice Chancellor for ITT and Chief ITT Architect** – The chief ITT architect is responsible for the overall architectural design and coordination of the consolidated ITT infrastructure. This office is responsible for coordinating technology design and development plans for all departments in the Division of ITT, throughout the University and with external groups to ensure that the campus infrastructure is developed and implemented using a consistent, comprehensive set of guiding technology principles and standards.

4) **Office of the Assistant Vice Chancellor for Teaching and Learning Systems (TLT)** – The mission of Teaching and Learning Technology is to develop, deploy and manage the infrastructure and curriculum for delivering technology proficiency and professional development competencies of the University community including students, faculty, and staff. TLT also engages in community-based initiatives addressing the “digital divide.”

TLT is responsible for developing information systems to enhance technological proficiency across the campus. The department assists the Academy for Teaching and Learning, and faculty with integrating technology, pedagogy and assessment into instruction. TLT also assists the learner-centered community by providing workshops and seminars to enhance their productivity and effective utilization of campus technology resource. TLT assists students by helping them become acclimated to the campus computing environment and increasing their awareness of various technology support services.

a. **Center for Distance Learning** – The Center for Distance Learning offers both traditional and non-traditional students the opportunity to obtain an education through the online and extension modes of learning. Courses offered online are delivered through the Internet. The University offered its first online courses during the fall 1999 semester. The Center for Distance Learning was established in March 2000 to help promote substantial enhancements in the quality of educational programming available to non-traditional students.

b. **ITT-Administrative Services Department** – The administrative services department inures accountability and compliance with university/state policies and procedures related to telephonic and wireless services, processing of service providers billing, maintaining accurate records for all university departments related to these services. This department is also responsible for providing internal customer services by processing requests by the end users and resolving any issues related to the services. This department is also responsible for processing all internal requests for purchases, invoice processing to accounting department, statistical reporting, financial reporting, budget analyst, departmental liaison with all administrative departments, colleges and schools of this university for EDP equipment, software, and telecommunications equipment.

c. **e-Learning Department** – The e-Learning department provides instruction and support for the software delivery of online learning. The e-Learning department responsibilities include developing information systems training materials to enhance technology proficiency across the campus and conducting workshops and seminars to enhance the faculty and staff productivity by effective utilization of the campus technology.
MAJOR FIELDS OF INSTRUCTION
This section identifies and gives pertinent information about all the fields of study that participate in graduate education at North Carolina A&T State University. There are a total of 52 different fields offering graduate degrees. In addition, there are nine fields that offer minors at the graduate level and eleven areas that support graduate education through offering graduate level courses or in some other capacity. Fields of instruction that offer graduate degrees are listed first. Information given for each field includes the faculty, requirements for admission to and completion of the degree program(s), student financial support, courses offered, and other relevant information. Following the degree offering fields is a listing of other fields of instruction which offer graduate minors or graduate courses, or support graduate education in some other way. To avoid duplication, basic Graduate School requirements for admission and completion of graduate degree programs are not duplicated for each field of instruction. Only those requirements that are unique to the field are given in the sections on the individual fields. The Graduate School offers major programs of study in the following fields.

DEGREES GRANTED
The School of Graduate Studies at North Carolina A&T State University offers the following degrees:

DOCTOR OF PHILOSOPHY (Ph.D.)
1. Electrical Engineering
2. Energy and Environmental Studies (Interdisciplinary)
3. Industrial Engineering
4. Leadership Studies (Interdisciplinary)
5. Mechanical Engineering
6. Industrial Management (Consortium Degree Program w/ University of Indiana)

MASTER OF ARTS (M.A.)
College of Arts and Sciences
1. English and African American Literature

MASTER OF ART IN EDUCATION
School of Education
1. Reading Education

MASTER OF ART IN TEACHING
School of Education
1. Elementary Education, General
2. Special Education
3. Human Performance and Leisure Studies

College of Arts and Sciences
1. Biology Education
2. Chemistry Education
3. English Education
4. History Education
5. Math Education

School of Business and Economics
1. Business Education

School of Agriculture and Environmental Sciences

School of Technology
1. Technology Education Trade and Industrial Education 9-12

MASTER IN SCHOOL ADMINISTRATION (M.S.A.)

School of Education
1. School Administration

MASTER OF SCIENCE (M.S.)

School of Agriculture and Environmental Sciences
1. Agribusiness, Applied Economics and Agriscience Education
 a. Agricultural Economics
 b. Agricultural Education
2. Animal Health Science
3. Food and Nutritional Science
4. Plant and Soil Science

College of Arts and Sciences
1. Biology
2. Biology, Secondary Education
3. Chemistry
4. Chemistry, Secondary Education
5. English, Secondary Education
6. History, Secondary Education
7. Mathematics, Applied
8. Mathematics, Secondary Education
9. Physics

School of Education
1. Adult Education
2. Counselor Education
3. Elementary Education
4. Physical Education
5. Human Resources (Agency Counseling)
6. Human Resources (Rehabilitation Counseling)
7. Instructional Technology

College of Engineering
1. Civil and Environmental Engineering
2. Chemical Engineering
3. Computer Science
4. Electrical and Computer Engineering
5. Industrial and Systems Engineering
6. Mechanical Engineering

School of Technology
1. Construction Management and Occupational Safety and Health
 a. Construction Management
 b. Environmental and Occupational Safety and Health
 c. Occupational Safety and Health
2. Electronics and Computer Technology
 a. Electronics and Computer Technology (MSIT)
 b. Information Technology (MSIT)
3. Graphic Communication Systems and Technological Studies
a. Graphic Communication Systems (MSIT)
b. Technology Education, Teaching
c. Trade and Industrial Education, Teaching
d. Training and Development for Industry
e. Workforce Development Director

4. Manufacturing Systems
 a. Manufacturing Systems (MSIT)

MASTER OF SCIENCE IN MANAGEMENT (M.S.M.)
School of Business and Economics
1. Human Resources Management
2. Management Information Systems
3. Transportation and Business Logistics
OBJECTIVES

The Department of Agribusiness, Applied Economics, and Agriscience Education offers programs of study leading to the Master of Science degrees in Agricultural Economics and Agricultural Education. The program in Agricultural Economics prepares students for careers in teaching, research, extension, agriculture-related business, and government service. The program in Agricultural Education emphasizes the professional improvement of teachers and professional workers in related areas with education responsibilities while concurrently preparing students for employment in administration, supervision, extension, teacher education, business, and research in agricultural education and related fields. Both programs also prepare students for further graduate studies to achieve a terminal degree.

DEGREES OFFERED

Master of Science - Agricultural Education
Concentrations: Professional Licensure, Professional Service

Master of Science - Agricultural Economics
Concentrations: Agricultural Marketing and International Trade; and Rural Development Policy

GENERAL PROGRAM REQUIREMENTS

The general requirements for admission are an undergraduate degree from an accredited institution, with a minimum grade point average of 2.65 (on a 4.0 scale) and a basic preparation in Agricultural Education, Education, General Agriscience, Agricultural Economics, Economics, Agribusiness or Business Administration, with a preparation in Economics/Statistics, generally will provide an acceptable preparation. Applicants who do not meet the requirements will be considered on an individual basis. Applicants are encouraged to provide GRE scores; however, these scores are not required for admission or graduation. A GPA of 3.0 is required for graduation.

PROGRAM REQUIREMENTS

Agricultural Economics:

The Master of Science in Agricultural Economics requires that the students complete one of two options:

1. **THESIS OPTION - 30 Hours:**
 This option requires a minimum of 30 semester hours, including 12 semester hours of “core” courses in advanced economic theory, a course in statistics and research methods, 9 semester hours of courses in the selected program track/concentrations, 1 elective 3-hour course, and 6 semester hours of thesis culminating in scholarly research work. In addition, the successful completion and defense of the thesis and a comprehensive examination are required.

2. **NON-THESIS OPTION - 30 Hours:**
 This option consists of a minimum of 30 semester hours, including 15 semester hours of “core” courses in advanced economic theory, a course in statistics, econometrics and research methods, 9 semester hours of courses in the selected program track, 1 elective 3-hour course, and 3 semester hours of a scientific project. This non-thesis option recognizes the changes within the agricultural economics discipline relative to the manner in which research is conducted and reported such that it becomes more applied, action-oriented and evaluative. The student may choose to complete an econometrics project or an issues based project. In addition, the successful completion and defense of the project paper and a comprehensive examination are required.
The student pursuing the Master of Science degree in Agricultural Economics/Agribusiness is required to complete a common core of courses consisting of:

AGEC 705 Advanced Statistics 3 Semester Hours
AGEC 710 Advanced Microeconomics 3 Semester Hours
AGEC 720 Advanced Macroeconomics 3 Semester Hours
AGEC 725 Research Methods 3 Semester Hours

or

AGED 703 Scientific Methods of Research 3 Semester Hours

In addition, areas of concentration as specified require the following courses:

Rural Development Policy

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Program Track/Concentration Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 708 Econometrics</td>
<td>9 Semester Hours</td>
</tr>
<tr>
<td>AGEC 732 Agricultural Policy</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 740 Production Economics</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 760 Social Organization of Agriculture and Rural Development</td>
<td>3 Semester Hours</td>
</tr>
</tbody>
</table>

Elective 3 Semester Hours

Thesis 6 Semester Hours

Total hours in concentration 30 Semester Hours

Agricultural Marketing and International Trade

<table>
<thead>
<tr>
<th>Core Courses</th>
<th>Program Track/Concentration Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 632 International Agricultural Trade Policy</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 634 International Agribusiness Marketing</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 734 Agricultural Marketing</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 735 Economic Development</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 736 Marketing Problems and Issues</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 738 Theory of International Trade</td>
<td>3 Semester Hours</td>
</tr>
<tr>
<td>AGEC 756 Agricultural Price Analysis</td>
<td>3 Semester Hours</td>
</tr>
</tbody>
</table>

Elective 3 Semester Hours

Thesis 6 Semester Hours

Total hours in concentration 30 Semester Hours

Notes: 1. Students who select the non-thesis option must take three hours of AGEC 708 (Econometrics) and three hours of AGED 750 (Community Problems).
2. The student, in consultation with his or her advisor, will select three courses from the program track of interest.

Agricultural Education:

Students seeking admission into agricultural education have a choice of two major study concentrations: Professional Licensure and Professional Service. The Professional Licensure track is designed for individuals who are currently teaching secondary agricultural education, holders of the “A” License for secondary agricultural education in the State of North Carolina, or those individuals who are within 12 hours of the “A” License. Students enrolled in the Professional Licensure Concentration are immersed in a curriculum based upon advanced competencies as mandated by the North Carolina Department of Public Instruction and
National Board for Professional Teaching Standards. Students enrolled in the Professional Licensure concentration have the option to pursue a thesis or non-thesis track. Upon completion of this concentration students are eligible for the “M” License in secondary agricultural education for the State of North Carolina.

Students choosing the Professional Service concentration have the opportunity to develop a plan of study, which will prepare them for careers in the broad areas of extension education, public relations, social capital development, curriculum design, adult education, program development and evaluation, agribusiness, as well as positions in agriscience research. The Professional Service Concentration consists of a thesis and non-thesis option.

Upon admittance into the graduate program in Agricultural Education the student is assigned an advisor who will guide him/her in the development of his/her graduate committee, plan of study, Product of Learning, and Educational Inquiry Project/Thesis. Completion of 37 semester hours of approved graduate level courses is required for both study concentrations. A well-balanced, unified, and complete program study will be required. In addition, those students who do not write a thesis must develop an educational inquiry project under the supervision of their graduate committee. The advisory committee will determine its nature and content. For those students who select the thesis option, they must complete 31 hours of approved graduate level courses and 6 hours of thesis credit. In both options students must successfully pass a written comprehensive examination in Agricultural Education to complete the degree program.

The student pursuing the Master of Science of Agricultural Education is required to complete a common core of courses consisting of:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE 705</td>
<td>Advanced Statistics</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>CUIN 710</td>
<td>Educational Statistics</td>
</tr>
<tr>
<td>AGE 725</td>
<td>Research Methods</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>AGED 703</td>
<td>Scientific Methods in Research</td>
</tr>
</tbody>
</table>

COURSES IN AGRICULTURAL EDUCATION

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGED 600</td>
<td>Youth Organization and Program Management</td>
</tr>
<tr>
<td>AGED 601</td>
<td>Adult Education in Vocational and Extension Education</td>
</tr>
<tr>
<td>AGED 607</td>
<td>Environmental Education</td>
</tr>
<tr>
<td>AGED 608</td>
<td>Agricultural Extension Organization and Methods</td>
</tr>
<tr>
<td>AGED 609</td>
<td>Community Analysis and Rural Life</td>
</tr>
<tr>
<td>AGED 611</td>
<td>Special Problems in Agricultural Education</td>
</tr>
<tr>
<td>AGED 612</td>
<td>Field Studies in Agricultural Education</td>
</tr>
<tr>
<td>AGED 700</td>
<td>Seminar in Agricultural Education and Extension</td>
</tr>
<tr>
<td>AGED 701</td>
<td>Professional Service Seminar</td>
</tr>
<tr>
<td>AGED 703</td>
<td>Scientific Methods in Research</td>
</tr>
<tr>
<td>AGED 704</td>
<td>History and Philosophy of Vocational Education</td>
</tr>
<tr>
<td>AGED 705</td>
<td>Advances in Agricultural Business and Science</td>
</tr>
<tr>
<td>AGED 708</td>
<td>Scientific Methods in Educational Research II</td>
</tr>
<tr>
<td>AGED 709</td>
<td>Study and Application of Technological Advances and Best Practices to Agriculture</td>
</tr>
<tr>
<td>AGED 710</td>
<td>Program Design, Management, and Evaluation</td>
</tr>
<tr>
<td>AGED 711</td>
<td>Advance Teaching and Assessment Methods</td>
</tr>
<tr>
<td>AGED 712</td>
<td>Government Policy Analysis and Agriculture and Problem Solving Techniques for Field Settings</td>
</tr>
<tr>
<td>AGED 750</td>
<td>Community Problems</td>
</tr>
<tr>
<td>AGED 751</td>
<td>Agricultural Education Across the Curriculum</td>
</tr>
<tr>
<td>AGED 752</td>
<td>Special Populations in Agricultural Education</td>
</tr>
</tbody>
</table>
AGED 753 Program Planning 3
AGED 754 History of Agricultural Education 3
AGED 795 Agricultural Industry Internship 4
AGED 796 Master’s Non-thesis Project Seminar 1
AGED 797 Agricultural Education Program Management 4
AGED 798 Seminar in Agricultural Education 1
AGED 799 Thesis Research 6

COURSES IN AGRICULTURAL ECONOMICS AND RURAL DEVELOPMENT

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEC 632 International Agricultural Trade Policy</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 634 International Agribusiness Marketing</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 638 Special Problems in Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 640 Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 641 Special Problems in Agribusiness Management</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 644 Statistical Methods in Agricultural Economics I</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 646 Statistical Methods in Agricultural Economics II</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 648 Appraisal and Finance of Agribusiness Firms</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 650 Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 675 Computer Applications in Agriculture</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 705 Statistical Methods in Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 708 Econometrics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 710 Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 720 Macroeconomics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 725 Research Methods in Agricultural Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 732 Agricultural Policy</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 734 Agricultural Marketing and Interregional Trade</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 735 Economic Development</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 736 Agricultural Marketing Problems and Issues</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 738 Theory of International Trade</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 740 Production Economics</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 756 Agricultural Price Analysis</td>
<td>3</td>
</tr>
<tr>
<td>AGEC-760 Social Organization of Agriculture and Rural Development</td>
<td>3</td>
</tr>
<tr>
<td>AGEC 799 Thesis Research</td>
<td>6 (6-0)</td>
</tr>
</tbody>
</table>

COURSES WITH DESCRIPTION IN AGRIBUSINESS, APPLIED ECONOMICS AND AGRISCIENCE EDUCATION

Advanced Undergraduate and Graduate

Agricultural Economics

AGEC-632. International Agricultural Trade Policy Credit 3 (3-0)
This course includes a review of economic and welfare theory applications relative to trade of agricultural commodities. Topical issues include the analysis of linkages among commodity programs, fiscal and trade policies for the U.S. and other countries in an interdependent world, development of an understanding of international institutions and their role in formulating aliments of strategic agricultural trade policy. Prerequisite: Consent of instructor.

AGEC-634. International Agribusiness Marketing Credit 3 (3-0)
This course will examine and analyze the series of problems, issues, policies, regulations and procedures relevant to the global marketing of agricultural and related commodities by agribusiness firms. Emphasis will be on combining firm-level agribusiness marketing concepts with international agribusiness marketing and export management practices, including the development of international agribusiness marketing plans and case studies from international agribusiness firms. Prerequisite: Consent of instructor.

AGEC-640. Agribusiness Management Credit 3 (3-0)
This course focuses on methods of research, plans, organization, and the application of management principles. Part of the student’s time will be spent in consultation with agribusiness firms. Prerequisite: Consent of the instructor.
AGEC-641. Special Problems in Agribusiness Management Credit 3 (3-0)
This course relies heavily on case studies and simulation models to help make decisions and solve problems faced by agribusiness managers. Also, students will be exposed to quantitative techniques for analyzing and solving problems confronting the firm. Emphasis is placed on applying theoretical concepts to the real-world decision-making environment. Prerequisite: Ag. Econ 640 or consent of instructor.

AGEC-648. Appraisal and Finance of Agribusiness Firms Credit 3 (3-0)
This course evaluates principles of land valuation, appraisal and taxation. Special areas include the role of credit in a money economy, classification of credit, principles underlying the economic use of credit and the role of the government in the field of credit.

AGEC-650. Human Resource Development Credit 3 (3-0)
This course focuses on the analysis of human resources in relation to changing agricultural production technology in rural areas. Prerequisite: Consent of instructor.

AGEC-675. Computer Applications in Agricultural Economics Credit 3 (3-0)
This course is designed to provide students with the tools to utilize computers for agricultural decision-making. Emphasis will be placed on utilizing existing software packages for microcomputers and mainframe computers to make financial, economic and quantitative analysis of farm and agribusiness-related problems. Prerequisite(s): Ag. Econ. 330 or Econ. 330.

Agricultural Education

AGED-600. Youth Organization and Program Management Credit 3 (3-0)
Principles, theories and practices involved in organizing, conducting, supervising, and managing youth organizations and programs. Emphasis will be on the analysis of youth organization and programs in vocational and extension education.

AGED-601. Adult Education in Vocational and Extension Education Credit 3 (3-0)
A study of the principles and problems of organizing and conducting programs for adults. Emphasis is given to the principles of conducting organized instruction in agricultural education, extension, and related industries.

AGED-607. Environmental Education Credit 3 (3-0)
Principles and practices of understanding the environment and the interrelated complexities of the environment. The course will include a study of agricultural occupations related to the environment and materials that need to be developed for use by high school teachers of agriculture and other professional workers.

AGED-608. Agricultural Extension Organization and Methods Credit 3 (3-0)
Principles, objectives, organization, program development, and methods in cooperative extension.

AGED-609. Community Analysis and Rural Life Credit 3 (3-0)
Educational processes, structure and function of rural society, and the role that diverse organizations, agencies, and institutions play in the education and adjustment of rural people to the demands of modern society.
AGED-611. Special Problems in Agricultural Education and Extension Credit 1-6 (1-6)
Special work in problems dealing with Agricultural Education and Extension will be examined. Students should be at the graduate level or be working on their lateral or provisional license in agricultural education.

AGED-612. Field Studies in Agricultural Education Credit 1-6 (1-6)
Field Studies involved in Agricultural and Extension Education.

Graduate Students Only

Agricultural Economics

AGEC-705. Statistical Methods in Agricultural Economics Credit 3 (3-0)
Advanced topics on analysis of variance, regression, correlation, multistage sampling and probability are covered in depth. Prerequisite: Ag. Econ. 646.

AGEC-708. Econometrics Credit 3 (3-0)
This course focuses on the application of econometric techniques to agricultural economic problems, theory and estimation of structural economic parameters. Prerequisite: Ag. Econ. 705.

AGEC-710. Microeconomics Credit 3 (3-0)
Price theory and the theory of the firm are covered comprehensively. The decision-making units in our economy and their market relationship are also examined.

AGEC-720. Macroeconomics Credit 3 (3-0)
A continuation of aggregate economics, with emphasis upon measurement, growth and fluctuation of national income is the focus of this course.

AGEC-725. Research Methods in Agricultural Economics Credit 3 (3-0)
The philosophical bases for research methods used in agricultural economics are discussed. Alternative research methods are compared with respect to their dependence on the concepts of economic theory, mathematics and statistics. Alternative approaches to planning research projects are evaluated.

AGEC-732. Agricultural Policy Credit 3 (3-0)
Advanced analysis of the role of agriculture in the general economy and of economic, political and social forces which affect development of agricultural policy is the substantive focus of this course.

AGEC-734. Agricultural Marketing and Interregional Trade Credit 3 (3-0)
This course is designed to apply basic economic theory to interpret the essential components of the domestic and international marketing process for agricultural products. The primary focus will be on the spatial, temporal and form dimensional of market price analysis with significant emphasis on regional interrelationship and specialization, current trade issues and the rational for trade. Specifically, students enrolled in this course will receive intensive instruction in the complex organization and function of the world’s food marketing system.

AGEC-735. Economic Development Credit 3 (3-0)
This course is designed to analyze factors and issues involved in the process of economic growth and development, with emphasis on developing countries. The theories, problems, objectives and strategies of development, including major policy issues, resources, and constraints of alternative strategies are discussed. The role of capital, technology, agriculture and international trade in the development process are examined.

AGEC-736. Agricultural Marketing Problems and Issues Credit 3 (3-0)
This course is designed to examine current complex problems in agricultural marketing and methods of developing solutions.

AGEC-738. Theory of International Trade Credit 3 (3-0)
The principal aim of this course is to familiarize the student with the fundamental mechanisms and theory (pure and monetary) of international trade. Selected topics will include the law of comparative advantage, gains from trade, factor endowments and growth theories, commercial
policy, foreign exchange and the balance of payments, and the monetary and portfolio balance mechanisms. Prerequisite: Consent of instructor.

AGEC-740. Production Economics
Credit 3 (3-0)
This course focuses specifically on production economics theory in a quantitative framework. Technical and economic factor-product, factor-factor, and product-product relationships in single and multi-product firms under conditions of perfect and imperfect competition in both factor and product markets are topical areas.

AGEC-756. Agricultural Price Analysis
Credit 3 (3-0)
The use of price information in the decision-making process is the essence of this course. The relation of supply and demand in determining agricultural prices and the relation of prices to grade, time, location, and stages of processing in the marketing system are considered. The course also includes advanced methods of price analysis, the concept of parity and the role of price support programs in agricultural decisions. Prerequisite: Consent of instructor.

AGEC-760. Social Organization of Agriculture and Rural Development
Credit 3 (3-0)
The student will be introduced to socioeconomic concepts and theory as they apply to issues relating to agriculture and rural development. Moreover, the student can expect to learn about the different types of farm organizations; governmental agricultural agencies, farm movements, models of community organizations, and the changing structure of agriculture. The student will have a better insight about why some rural areas are growing and others are declining; how rural and urban areas are interdependent; how growth affects the distribution of income between income classes in these areas. Finally the student will gain an appreciation of how the different intellectual socioeconomic traditions explain the development of rural and urban economies and how to apply socioeconomic analysis in the discussion of federal, state and local policy for rural areas.

AGRI-799. Thesis
Credit 6 (6-0)

Agricultural Education

AGED-700. Seminar in Agricultural Education
Credit 1 (1-0)
A review of current problems and practices in the field of agricultural education and extension.

AGED 701. Professional Service Seminar
Credit 1 (1-0)
This course will prepare students for the entire Master’s Program. Students will establish goals and objectives for their Master’s Program. Students will also be introduced to the Professional Portfolio that is required of all Master’s Students on the completion of their program.

AGED-703. Scientific Methods in Research
Credit 3 (3-0)
Methods of procedures in investigation and experimentation in education, accompanied by critical examination of studies made in agricultural education and related fields. A research problem is developed under the supervision of the staff.

AGED-704. Foundation and Philosophy of Agricultural Education
Credit 3 (3-0)
This advanced course deals with the development, organization, and philosophical foundations of agricultural education from colonial times to the present. Emphasis is placed on the role of societal and scientific changes, the federal government, and philosophy and its role in life including the rise of education in America, legislation having an impact on agricultural education, education in agriculture, and current issues in agricultural education on the evolution of agricultural education. Students will be expected to develop and defend their philosophy of agricultural education based on the foundations and philosophy of Agricultural Education. In addition to the above, students will be expected to research educational topics, critique the current research and present a seminar on their research topic.

AGED-705. Advances in Agricultural Business and Science
Credit 3 (3-0)
Students will review and study the literature on innovations in agribusiness-science practices, processes and product technologies. They will become knowledgeable and articulate about issues related to the role and contribution of science and research to agriculture over time, the development and diffusion of best practices, the impact of specific technological breakthroughs and basic techniques for assessing the efficacy of these.
AGED-708. Scientific Methods in Educational Research II Credit 3 (3-0)
This course covers advanced techniques in qualitative and quantitative research methodology focusing on the formulation of substantive research questions, problems or issues. Students will learn to apply a variety of educational research procedures such as ethnographic methodologies, evaluation research and case studies, qualitative choice models, nonparametric and parametric statistical methods and quasi-experimental techniques for field research and general linear models. Students will conduct, under the direction of the instructor, a research educational based project on their present agricultural educational experiences. Prerequisite: AGED 703.

AGED-709. Study and Application of Technological Advances and Best Practices to Agriculture Credit 3 (3-0)
This course provides students with an opportunity to observe and study the application of technological advances and best practices in a variety of settings in agriculture. In addition, students will work to develop a repertoire of skills and techniques that will enable them to select and apply innovations to their own educational settings, particularly the infusion of technology into the curriculum. The program will draw on the expertise of industry specialists and researchers, field trips and labs will provide hands-on experience. Prerequisite: AGED 705.

AGED-710. Program Design, Management, and Evaluation Credit 3 (3-0)
The planning, management and development of agricultural educational programs including needs assessment, objectives, development and content and materials selection. Evaluation of instructional programs; formative for program improvement and summative for outcomes accountability. Prerequisite: AGED 700.

AGED-711. Advance Teaching and Assessment Methods Credit 3 (3-0)
This course focuses on advanced concepts and methods relevant for both formal and informal agricultural education presentations, effects that methods may have on individuals involved in the learning experience and demonstrations of proficiency in use of various advanced methodologies, technologies and concepts. Students will focus on human learning development, diversity issues, motivational strategies to plan, use and evaluate student learning. Students will research and present projects based on the course of study. Students will keep a reflective journal based on the infusion of learning methods used in their educational occupations. Prerequisites: AGED 700 (701 for Professional Service Majors), 704, 709, 710.

AGED-712. Government Policy Analysis and Agriculture and Problem Solving Techniques for Field Settings Credit 3 (3-0)
Students will become conversant with basic principles, procedures, and phases of public policy formulation, analysis and decision making. Students will use agricultural issues/problem and policy as case studies to trace the evolution of an issue/problem/felt need into legislation or policy. Students will also learn basic techniques for analyzing policy impacts. Prerequisite: AGED 703.

AGED-750. Community Problems Credit 3 (3-0)
A study of the common problems of the community that relate to agriculture and related areas and of solutions for these problems.

AGED-751. Agricultural Education across the Curriculum Credit 3 (3-0)
This advance course will center on the application of curriculum development models, theories and processes in agricultural education. A large portion of the class will be devoted to the integration of agricultural curriculum into other subject areas such as Math, Science, English and History and the integration of other subject matter areas into agricultural education. Student will evaluate curriculum products and learn to modify curriculum to meet the needs of all students as well as reinforce other curricular areas. Students will see how content matter can be reinforced as it is taught across all curricular areas. Students will be expected to present a project based on developing curricular plans and materials that address curriculum integration as related to agricultural education. Prerequisite(s): AGED 700 (701 for Professional Service Majors), 703, 704, 710.

AGED-752. Special Populations in Agricultural Education Credit 3 (3-0)
This advance course will focus on the diverse needs of students for learning to take place.
Special emphasis will be placed on the instruction of agricultural education to populations of students within economic, gender, ethnic, cultural, political, physical differences. Students will discover and use educational theory to examine strategies and plans to overcome problems in their educational occupations. Students will research both legal requirements and expectations that effect what can be done with increase student learning. Students will be required to develop and present a diversity management plan for their program. Prerequisite(s): AGED 700, 703, 704, 753.

AGED-753. Teaching and Assessment for Agricultural Professionals Credit 3 (3-0)
This course focuses on concepts and methods relevant for both formal and informal education presentations, effects that methods may have on individuals involved in the learning experience and demonstrations of proficiency in use of various educational methodologies, technologies and concepts. Students will focus on human learning development, diversity issues, motivational strategies to plan, use and evaluate student learning. Students will research and present projects based on the course of study. Students will keep a reflective journal based on the infusion of learning methods used in their educational occupations. Prerequisite(s): AGED 701, 704, 709, 710.

AGED-754. History of Agricultural Education and Extension Credit 3 (3-0)
Historical development, social and philosophical foundations, and current status in relation to the total vocational education program. Special attention is given to agricultural education and extension as it developed in the United States.

AGED-796. Master’s Non-thesis Project Seminar Credit 1 (1-0)
This seminar will focus on the needs of bringing agricultural education programs up to date with public requirements and the success of all students. Students will be required to do outside reading in current educational trends in agricultural education and critique them. Students will present two seminars in this course. One will focus on an issue in agricultural education and the second will be based on the student’s Agricultural Education Program Management Plan. Prerequisite: AGED 797.

AGED-797. Agricultural Education Program Management Plan Project Credit 4 (4-0)
Students in the Non-thesis option will be required to put a management plan together for their educational occupational program. The plan will include research on the needs and expectations of the educational program and the evidence that either shows compliance or plans to meet the programs needs. Students will work with their committee to establish the requirement of the plan and evidence which will be required to meet the plans expectations. Students will present their plan in AGED 796. Prerequisite(s): AGED 700, 703 and 710.

AGED-798. Seminar in Agricultural Education Credit 1 (1-0)
This course is designed for students who are in their last semester of their Master’s program. The course focuses on the needs and expectations of being a Master Teacher and a leader in agricultural education. Students will be expected to present their Master Teacher portfolio at the end of the course. Students will also present seminars based on topics related to the overall themes, competencies, standards of the Agricultural Education Master’s Program. Prerequisite: Last semester of the Master’s Program.

AGRI-799. MS Thesis Research Credit 6 (6-0)
Master of Science thesis research under the supervision of the thesis committee chairperson, leading to the completion of the Master’s thesis. This course is only available to thesis option students.

GRADUATE FACULTY

School of Agriculture and Environmental Sciences

Department: Agribusiness, Applied Economics, and Agriscience Education
Chair: Dr. Anthony K. Yeboah

Kofi Adu-Nyako, B.S., University of Science and Technology; M.S., Cornell University; Ph.D., University...
Antoine J. Alston, B.S., M.S., North Carolina A&T State University; Ph.D., Iowa State University, Associate Professor

Marcus Comer, B.S., M.S., Tennessee State University, Ph.D., University of Missouri, Assistant Professor

Godfrey C. Ejimakor, B.S., North Carolina State University; M.S., North Carolina A&T State University; Ph.D., Texas Tech, Associate Professor

Benjamin Gray, B.S., M.S. North Carolina A&T State University, Ph.D., North Carolina State University, Adjunct Assistant Professor

Kenrett Y. Jefferson-Moore, B.S. Southern University, M.S. Alabama A&M University, Ph.D. Auburn University, Assistant Professor

Daniel M. Lyons, B.S., M.S., North Carolina A&T State University; Ed.D., Virginia Polytechnic Institute and State University, Agricultural Extension Faculty, Administration

Donald R. McDowell, B.S., Southern University A&M; M.S., Ph.D., University of Illinois, Professor/Associate Dean for Academic programs

John O’Sullivan, B.A., Stanford University; M.S., Auburn University; Ph.D., University of California at Los Angeles, Agricultural Extension Faculty

John P. Owens, B.S. Appalachian State University, M.S. North Carolina A&T State University, Adjunct Instructor

Richard D. Robbins, B.S., N. C. A&T State University; M.S., Ph.D., North Carolina State University, Professor

Terrence Thomas, B.S., University of West Indies; M.S., University of Wisconsin; Ph.D., Louisiana State University, Adjunct Associate Professor

Alton Thompson, B.S., North Carolina Central University; M.S., Ph.D., Ohio State University, Professor and Dean

Anthony K. Yeboah, B.S., University of Science and Technology, Kumasi, Ghana; M.S., Ph.D., Iowa State University, Professor and Chairperson

Osei-Agyeman Yeboah, B.S. University of Science and Technology, Kumasi, Ghana, M.S. North Carolina A&T State University, Ph.D. University of Nebraska, Adjunct Assistant Professor

FACULTY EMERITI

Sidney H. Evans, B.S. Virginia State University, M.A. Ph.D. Ohio State University, Professor Emeritus
The Department of Animal Sciences offers a graduate program in Animal Health Science that emphasizes the effects of environmental factors upon animal growth and development, reproduction, and disease resistance. Courses are designed to provide a solid foundation of fundamental biological and biochemical principles within the disciplines of breeding and genetics, biotechnology, food safety, microbiology, nutrition, pathology, physiology, and toxicology.

OBJECTIVES

To advance scholarship in Animal Sciences and related disciplines; to prepare and increase the number of professionals with graduate training for employment in animal sciences, animal agriculture, biomedical, biotechnology and related industries, and to prepare students to enter Ph.D. degree programs.

DEGREE OFFERED

Master of Science - Animal Health Science

GENERAL PROGRAM REQUIREMENTS

The general requirements for admission to the program are an undergraduate degree from an accredited four year college or university with a minimum grade point average of 2.6 (on a 4.0 scale), and a basic preparation in animal and or laboratory animal sciences, biological, physical or agricultural sciences, or related areas. Applicants who do not meet the requirements will be considered on an individual basis. Applicants are encouraged to provide GRE scores, although these scores are not required for admission or graduation. A minimum of 30 credit hours and a GPA of 3.0 is required for graduation.

PROGRAM ORGANIZATION

Core Courses. Core courses provide the student with an understanding of the relationships between the animal and its environment, within specific biological disciplines. Core courses constitute 13 credit hours. Each student in the program is required to take the core courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit (Lec.-Lab.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 701</td>
<td>Environmental Topics in Animal Health</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 702</td>
<td>Seminar in Animal Health</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td>AGRI 799</td>
<td>MS Thesis Research</td>
<td>6 (6-0)</td>
</tr>
<tr>
<td>AGRI 604</td>
<td>Research Design and Analysis</td>
<td>3 (2-2)</td>
</tr>
</tbody>
</table>

Elective Courses:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit (Lec.-Lab.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 604</td>
<td>Administrative and Regulatory Policies Governing Animal Use</td>
<td>2 (2-0)</td>
</tr>
<tr>
<td>ANSC 611</td>
<td>Principles of Animal Nutrition</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 614</td>
<td>Animal Breeding</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 624</td>
<td>Physiology of Reproduction</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 637</td>
<td>Environmental Toxicology</td>
<td>3 (2-3)</td>
</tr>
<tr>
<td>ANSC 641</td>
<td>Disease Management of Livestock and Poultry</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 665</td>
<td>Techniques in Biotechnology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ANSC 712</td>
<td>Nutrition and Disease</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 713</td>
<td>Global Livestock Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ANSC 723</td>
<td>Animal Physiology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 708</td>
<td>Special Problems in Animal Health</td>
<td>2 (2-0)</td>
</tr>
<tr>
<td>ANSC 782</td>
<td>Cellular Pathobiology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ANSC 771</td>
<td>Bioinformatics and Design Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>LASC 653</td>
<td>Laboratory Animal Management and Clinical Techniques</td>
<td>4 (2-6)</td>
</tr>
<tr>
<td>LASC 660</td>
<td>Special Techniques in Specimen Preparation,</td>
<td></td>
</tr>
</tbody>
</table>
COURSES WITH DESCRIPTION IN ANIMAL SCIENCES

For Advanced Undergraduate and Graduate Students

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Hours (Lecture-Tutorial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC-604</td>
<td>Administrative and Regulatory Policies Governing Animal Use</td>
<td>2</td>
<td>2-0</td>
</tr>
<tr>
<td></td>
<td>Regulations that impact the use of animals for research, education and testing. Federal, state and local regulations and policies. Regulations, facilities, and practices involving the use of hazardous agents (biological, chemical, and physical) which affect the safety of humans and animals. Prerequisite: Permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-611</td>
<td>Principles of Animal Nutrition</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of modern animal nutrition. Nutrient metabolism and role in productive functions. Prerequisite: ANSC 212 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-613</td>
<td>Livestock and Meat Evaluation</td>
<td>2</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td>Selection and evaluation of desirable animals in both market and breeding classes. Identification and evaluation of wholesale and retail cuts of meat. Prerequisites: ANSC 312 and ANSC 413.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-614</td>
<td>Animal Breeding</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Application of genetic and breeding principles to livestock production and improvement. Phenotypic and genotypic effects of selection methods; mating systems. Prerequisites: ANSC 211 and ANSC 214.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-615</td>
<td>Selection of Meat and Meat Products</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Identification, grading and cutting of meats. Prerequisites: ANSC 421 or ANSC 416.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-619</td>
<td>Special Problems in Livestock Management</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>In depth study of problems in feeding, breeding, and management in the production of beef cattle, sheep and swine. Prerequisite: Senior standing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-624</td>
<td>Physiology of Reproduction in Vertebrate Species</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Mechanisms of reproductive processes with special emphasis on their interaction with the disciplines of nutrition, immunology and biochemistry. Prerequisites: LASC 461 or ANSC 723 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-637</td>
<td>Environmental Toxicology</td>
<td>3</td>
<td>2-3</td>
</tr>
<tr>
<td></td>
<td>Sources, distribution, and toxicity of chemicals which are hazardous to the environments of man and animals. Prerequisite: LASC 636 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-641</td>
<td>Disease Management of Livestock and Poultry</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Prevention and control of diseases in livestock species and poultry; Micro- and macroenvironments that result in disease. Prerequisites: ANSC 451 or permission of instructor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-657</td>
<td>Poultry Anatomy and Physiology</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Structure and function of tissues, organs, and systems of the domestic fowl. Prerequisite: ANSC 451.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-659</td>
<td>Special Problems in Poultry</td>
<td>3</td>
<td>3-0</td>
</tr>
<tr>
<td></td>
<td>Assignment of work in a student’s area of interest; project method in Poultry Science. Prerequisite: Three advanced courses in Poultry Science.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSC-665</td>
<td>Techniques in Biotechnology</td>
<td>3</td>
<td>2-2</td>
</tr>
<tr>
<td></td>
<td>Basic principles and laboratory experiences in biotechnology. Concepts of DNA structure, function, related applications in biotechnology. Isolating DNA and RNA; genomic DNA and plasmid DNA analysis, gel electrophoresis, Southern hybridizations, gene probes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites: ANSC 214, CHEM 251, BIOL 466 or permission of instructor.

LASC-653. Laboratory Animal Management and Clinical Techniques Credit 4 (2-6)
Principles, theories and current concepts of Laboratory Animal Science. Government regulations, ethical consideration, animal facility management and animal health surveillance. Prerequisite: Permission of instructor.

LASC-660. Special Techniques in Specimen Preparation, Immunological Techniques, Electron Microscopy, Radios isotopes, Radiology or Histotechnology Credit 3 (1-6)
Special expertise in either preparation of animal models for classroom, museum and special display, the theoretical and practical aspects of immunological techniques, electron and light microscopy, radiology, tissue culture or histochemistry. Prerequisite: Permission of instructor.

BIOL-671. Principles of Immunology Credit 3 (3-0)
A study of mammalian immune responses; particularly in humans. Special emphasis will be placed on the physiology, genetics, and regulation of immune responses. Interrelationships between nonspecific and specific immune reactions, humoral and cell-mediated immunity, effector cells, and diseases are also stressed; along with research and diagnostic methodologies. Prerequisites: BIOL 221 and BIOL 466; CHEM 221 and CHEM 222.

CHEM-651. General Biochemistry Credit 3 (3-0)
A study of modern biochemistry. This course emphasizes chemical kinetics and energetics associated with biological reactions and includes a study of carbohydrates, lipids, proteins, vitamins, nucleic acids, hormones, photosynthesis, and respiration. Prerequisites: CHEM 431 and CHEM 442.

GRADUATE STUDENTS ONLY
ANSC-701. Environmental Topics in Animal Health Credit 3 (3-0)
Influence of the environment upon the health status of animals within the disciplines of epidemiology, toxicology, pathobiology, reproductive physiology, nutrition, and microbiology.

ANSC-702. Seminar in Animal Health Credit 1 (1-0)
Seminar includes faculty, graduate students, and guest lectures on research, scientific methods, the publication process and related topics in the field of animal health sciences.

ANSC-708. Special Problems in Animal Health Credit 2 (2-0)
Independent investigations to strengthen the student’s knowledge of the scientific methods. Investigations are conducted within a variety of research areas congruent with the environmental focus of the Animal Health Science program.

ANSC-712. Nutrition and Disease Credit 3 (3-0)
The effect of altering the levels and ratios of nutrients upon the health of an animal and resultant biochemical or biological processes. The effects of disease upon altered nutrient supply. Prerequisite: ANSC 611 or permission of instructor.

ANSC-713. Global Livestock Systems Credit 3 (2-2)
Theoretical constructs of livestock systems in different agro-ecological zones and farming systems in the US and the world. Discussion of literature and research techniques related to animal production in various systems. Economic contributions, environmental, and socio-political impact of domestic animals.

ANSC-723. Animal Physiology Credit 3 (3-0)
An in-depth study of function and interrelationships among nervous, muscular, circulatory, respiratory, digestive, urinary and reproductive systems of laboratory and farm animals. Prerequisite: Permission of instructor.

ANSC-771. Bioinformatics and Genome Analysis Credit 3 (3-0)
The course will be on bioinformatics and its application to genome analysis, computational tools and methods for organizing data, as well as large scale DNA sequencing, gene expression analysis methods and algorithms for basic and advanced search techniques.
ANSC-782. Cellular Pathobiology Credit 3 (3-0)
Current concepts of the structure, function and pathobiology of the cell. Methodologies used
to study the cell and its processes. Prerequisite: CHEM 651 or permission of instructor.

AGRI 799. Thesis Research in Agriculture and
Environmental Science Credit 1-6 (1-0) to 6 (6-0)

AGRI-999. Continuation of Thesis Credit 1 (1-0)

Graduate Faculty

Department: Animal Sciences
Chair: Dr. Ralph C. Noble

Allen, John W., B.S., University of Georgia; M.S., Ph.D., University of North Carolina; Adjunct
Assistant Professor
Fultz, Doris G., B.S., Virginia Commonwealth University; B.S., DVM, Tuskegee University;
Associate Professor
Hanner, Tracy L., B.S., North Carolina Central University; DVM, North Carolina State University;
Adjunct Assistant Professor
McKinnie, M. Ray, B.S., North Carolina A&T State University; M.S., Ohio State
University; Ph.D., North Carolina State University; Associate Dean for Cooperative Extension Program
Miller, John H., B.S., Elon College; M.S., North Carolina A&T State University; Ph.D., Virginia Tech; Interim
Research Scientist
Noble, Ralph C., B.S., M.S., Tuskegee University; Ph.D., University of Illinois-Champaign-Urbana; Associate
Professor and Chairperson
Oh, Sang-Hyon, B.S., M.S., Seoul National University; Ph.D., North Carolina State University; Adjunct
Assistant Professor
Willis, Willie, B.S., Fort Valley State University; M.S., Ph.D., Colorado State University;
Professor
Worku, Mulumebet, B.Sc., Addis Ababa University, Alema College of Agriculture, Ethiopia;
M.S., Ph.D., University of Maryland, College Park; Associate Professor

Biology

Goldie S. Byrd, Chairperson
102 Barnes Hall
(336) 334-7907
gsbyrd@ncat.edu
OBJECTIVES

The Department’s primary objective for the Master of Science in Biology degree program is to prepare students to enter and complete doctoral programs in order to become productive teachers and researchers. To support that objective, this program will develop in all participants, through research experiences, and other enrichment activities, independent thinking, creativity critical judgment and personal integrity. Specifically, this program is designed to enhance the students’ ability to design experiments, to analyze results, to become competent using state-of-the-art research equipment, enhance manipulative skills, and to improve the students’ proficiency in oral and written communication. An additional critical objective is to enable students to score at or above the 50th percentile on the GRE Subject Test in Biology after their first year in residency.

The Department’s primary objective for the Master of Science, Secondary Education degree program is to enhance the ability of teaching professionals to convey the fundamental concepts of biology at the secondary level. Additionally, this program will develop, through experiential learning, instruction, and other creative activities, independent thinking, critical judgment and personal integrity, particularly as they relate to the learning process. The department will provide an environment for teaching professionals to undertake advanced studies from the array of biological disciplines and expand their understanding of and appreciation for the world of living things.

DEGREES OFFERED

Master of Science in Biology (Thesis Option)
(30 semester hours including 6 hours of thesis research. Fifty percent of the accumulated hours must be at or above the 700 level.)

Master of Science in Biology (Non-Thesis Option)
(30 semester hours, including master’s project. Fifty percent of the accumulated hours must be at or above the 700 level.)

Master of Science in Biology, Secondary Education
(39 semester hours of which 24 are to be in Biology and 15 are to be in Education. Fifty percent of the accumulated hours must be at or above the 700 level. There are two options in this degree program: thesis and non-thesis.)

GENERAL ADMISSION REQUIREMENTS

The admission of students to both graduate degree programs is consistent with the general admission requirements of the School of Graduate Studies. Specific Departmental requirements are chosen to assure the success of students admitted to its graduate programs. A student wishing to be accepted as a candidate to either program must have completed, on the undergraduate level, chemistry through Organic II, one year of calculus, one year of physics (calculus-based physics is preferred) and courses in cellular and molecular biology. Students lacking these requirements may be given provisional admission and be required to successfully complete some or all of these courses before being admitted to candidacy. All applicants must submit GRE scores (General and Subject Test in Biology) to the Graduate School. Applicants must submit a personal statement highlighting their academic accomplishments and stating their career goals. Applicants who submit transcripts from foreign institutions must provide credentials verified by a United States-based transcript verification service. In addition, the Master of Science in Biology, Secondary Education requires the following:

(a) Have two years of supervised instructional experience in a private or public school setting, laboratory instruction while enrolled in a graduate program, or as a lecturer in a community college or four-year college or university.
(b) Hold or obtain a North Carolina “A” Teaching Certificate at the elementary, middle, or secondary level or its equivalent license from another state.
(c) Submit official scores for the Graduate Record Examination General Test or Miller Analogies Test.
(d) Have an undergraduate overall GPA of 3.0 or better on a 4.0 scale.
(e) Submit a satisfactory essay providing a statement on the applicant’s purpose for pursuing a master’s degree.

Application deadlines for fall and spring semester admissions are July 15th and November 15th, respectively. The student is advised to read the Graduate Bulletin very carefully for additional graduate school requirements for admission to candidacy for a degree as well as other Departmental requirements.
SPECIFIC PROGRAM REQUIREMENTS

MASTER OF SCIENCE IN BIOLOGY (THESIS OPTION)
1. BIOL 862, 863 (Thesis Research, 6 semester hours)
2. BIOL 701, 702 (Seminar, 2 semester hours)
3. CHEM 651, 652 (Biochemistry, 5 semester hours)
4. Complete a minimum of 17 additional semester hours bringing the total to 30 semester hours. Courses for graduate credit in Biology may be selected from Biology courses at the 600 – 800 levels. Please note that fifty percent must come from courses at or above the 700 level.
5. Maintain a 3.0 grade point average.
6. Attend all Departmental Seminars.
7. Satisfactorily complete an examination in a foreign language.
8. Have at least one academic year of residence at A&T.
9. BIOL 788 (Comprehensive Examination, 0 semester hours). This is the recording mechanism for students to meet the Comprehensive Examination requirement. The student must register for this “course” the semester he/she will take the Comprehensive Examination and the student must earn a P for pass. To sit for this examination the student must have a grade point average of 3.00 or greater and must have successfully completed all graduate course work (except course work currently in progress).
10. Satisfactorily present and defend the thesis.

MASTER OF SCIENCE IN BIOLOGY (NON-THESIS OPTION)
1. BIOL 712 (Master’s Project, 3 semester hours)
2. BIOL 701, 702 (Seminar, 2 semester hours)
3. CHEM 651, 652 (Biochemistry, 5 semester hours)
4. Complete a minimum of 23 additional semester hours bringing the total to 33 semester hours. Courses for graduate credit in Biology may be selected from Biology courses at the 600 – 800 levels. Please note that fifty percent must come from courses at or above the 700 level.
5. Maintain a 3.0 grade point average.
6. Attend all Departmental Seminars.
7. Have at least one academic year of residence at A&T.
8. BIOL 788 (Comprehensive Examination, 0 semester hours). This is the recording mechanism for students to meet the Comprehensive Examination requirement. The student must register for this “course” the semester he/she will take the Comprehensive Examination and the student must earn a P for pass. To sit for this examination the student must have a grade point average of 3.00 or greater and must have successfully completed all graduate course work (except course work currently in progress).
9. Satisfactorily complete and defend a Master’s Project.

MASTER OF SCIENCE IN BIOLOGY, SECONDARY EDUCATION
The Master of Science in Biology, Secondary Education program has two options; both require 39 hours of graduate course work. The thesis option requires BIOL 862, which includes thesis research carried out under the supervision of a thesis advisor. The non-thesis option requires the preparation of a product of learning portfolio (lectures, laboratories, demonstrations, etc.) developed from the area courses in biology and consistent with the State Department of Public Instruction’s mandated curriculum. The learning portfolio will be assembled under the supervision of a graduate advisor. Under both options the student must:
1. Complete the 5 courses of the 15 credit hour Professional Core (CUIN 619, CUIN 711, CUIN 721, CUIN 728, and CUIN 729).
2. Complete 8 or more biology courses (24 semester hours) that are approved by the graduate advisor.
3. Maintain a 3.0 grade point average.
4. Have at least one academic year of residence at A&T.
5. Pass final comprehensive examinations in Biology and Education. BIOL 788 (Comprehensive Examination, 0 semester hours) is the recording mechanism for students to meet the Comprehensive Examination requirement in Biology. The student must register for this “course” the semester he/she will take the Comprehensive Examination and the student must earn a P for pass. To sit for this examination the student must have a grade point average of 3.00 or greater and must have successfully completed all graduate course work (except course work currently in progress).
6. In the thesis option, satisfactorily present and defend the thesis.
LIST OF GRADUATE COURSES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (lec-lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 610</td>
<td>Prokaryotic Biology</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>BIOL 620</td>
<td>Food Microbiology</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>BIOL 621</td>
<td>Soil Microbiology</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Molecular Genetics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 631</td>
<td>Endocrine Physiology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 640</td>
<td>Introduction to Bioinformatics and Genomic Research</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>BIOL 642</td>
<td>Special Problems in Biology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 650</td>
<td>Frontiers in Molecular Biology</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>BIOL 665</td>
<td>Evolution</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 667</td>
<td>Animal Physiology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 671</td>
<td>Principles of Immunology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 700</td>
<td>Environmental Science</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 701</td>
<td>Biological Seminar</td>
<td>1 (0-2)</td>
</tr>
<tr>
<td>BIOL 702</td>
<td>Biological Seminar</td>
<td>1 (0-2)</td>
</tr>
<tr>
<td>BIOL 703</td>
<td>Experimental Methods in Biology</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>BIOL 704</td>
<td>Cell and Molecular Biology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 712</td>
<td>Master’s Project</td>
<td>3 (0-6)</td>
</tr>
<tr>
<td>BIOL 739</td>
<td>Radio-isotope Techniques and Radiotracer Methods</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>BIOL 740</td>
<td>Essentials of Plant Anatomy</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 741</td>
<td>Applied Plant Ecology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 742</td>
<td>Physiology of Vascular Plants</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 743</td>
<td>Developmental Plant Morphology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 744</td>
<td>Plant Nutrition</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 749</td>
<td>Recent Advances in Cell Biology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 750</td>
<td>Microscopy Technique</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>BIOL 759</td>
<td>Experimental Developmental Biology</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>BIOL 765</td>
<td>Introductory Experimental Zoology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>BIOL 780</td>
<td>Animal Physiological Ecology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BIOL 788</td>
<td>Comprehensive Examination</td>
<td>0 (0-0)</td>
</tr>
<tr>
<td>BIOL 862</td>
<td>Biology Thesis I</td>
<td>3 (0-6)</td>
</tr>
<tr>
<td>BIOL 863</td>
<td>Biology Thesis II</td>
<td>3 (0-6)</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS IN BIOLOGY

Advanced Undergraduate and Graduate Courses

BIOL-610. Prokaryotic Biology
Credit 4 (2-4)
A survey of the taxonomy, classification, ultrastructure, reproduction, physiology, and ecology of selected bacteria and bacteriophages. The laboratory will emphasize self-instruction and independent study. Prerequisites: Biology 200 or 221; Biology 466.

BIOL-620. Food Microbiology
Credit 4 (2-4)
A survey of selected topics in food microbiology. Approximately one-third of the course will cover the metabolic pathways, organisms and processes involved with food production from fermented dairy products, vegetables, fruits and meats. Food spoilage, preservation, infection, and intoxicification will also be discussed. The laboratory will introduce students to the microorganisms involved with food production and spoilage. Prerequisites: Biology 200 or 221.

BIOL-621. Soil Microbiology
Credit 4 (2-4)
An introduction to the role of soil microorganisms in soil fertility. The activity of nitrogen-fixing bacteria and those involved in the decomposition of organic waste materials will be emphasized. The laboratory will introduce students to the enumeration, distribution, and characterization of microorganisms important to soil microbiology. Prerequisites: Biology 200 or 221.

BIOL-630. Molecular Genetics
Credit 3 (3-0)
DNA and RNA structure, function and processing in prokaryotic and eukaryotic systems. Various aspects of recombinant DNA technology will be examined. Prerequisites: Biology 201 and 466.
BIOL-631. Endocrine Physiology Credit 3 (3-0)
This course would provide a basic introduction to endocrine function and include recent advances in the field of endocrinology. Emphasis will be placed on general aspects of endocrine physiology, the organization of the endocrine system, mechanisms of hormone action, and control of endocrine secretion. Prerequisites: Biology 201 and 462.

BIOL-640. Introduction to Bioinformatics and Genomic Research Credit 3 (1-4)
The purpose of this course is to provide integrative experiences in computer and bench research in bioinformatics and genome science. Students will acquire hands-on experiences with web-based software and the tools research scientists are using to study the genomes of plants, microbes, humans and other organisms. They will input experimental data into one or more of these databases to perform genetic analyses for making predictions about gene identity, structure, function, similarities and phylogenetic relationships. They will also use the databases to develop biochips, probes and primers for various laboratory applications. The integrative benchwork will involve testing results from database queries in the laboratory. This course will merge education and research and where possible engage students in investigative activities that involve collaborations with scientists on and off the campus. Prerequisites: BIOL 401 and BIOL 466. (F,S)

BIOL-642. Special Problems in Biology Credit 3 (2-2)
Research projects on specific problems in biology for advanced students. Prerequisites: Biology 462 or 466 and permission of instructor. Prerequisites: Biology 462 or 466 and permission of instructor.

BIOL-650. Frontiers in Molecular Biology Credit 4 (2-4)
This course focuses on the theory, methods and applications of recombinant DNA technology. It includes special topics in molecular, cellular and developmental biology. The laboratory will provide hands-on exposure to the polymerase chain reaction, gene sequencing, development of gene libraries and other techniques in molecular biology.

BIOL-661. Mammalian Biology Credit 3 (3-0)
A study of the evolutionary history, classification, adaptation and variation of representative mammals. Prerequisites: Biology 160 and 260.

BIOL-665. Evolution Credit 3 (3-0)
This course will emphasize the genetics of populations and sources of genetic variation; causes of genetic change in populations including natural selection; speciation; and the evolutionary history of life on earth. Prerequisites: Biology 310 and 466.

BIOL-667. Animal Physiology Credit 3 (3-0)
This course will provide students with an understanding of the current state of animal physiology at the level of the whole organism and its component organs and organ systems. Emphasis will be placed on function as it relates to survival of organisms in natural environments and on the regulation of homeostatic mechanisms. Topics would include metabolism, temperature regulation, reproductive mechanisms, circulation, gaseous exchange, nutrient processing, osmoregulation and ionic balance. Prerequisites: Biology 160 and 462.
BIOL-671. Principles of Immunology Credit 3 (3-0)
A study of mammalian immune responses; particularly in humans. Special emphasis will be placed on the physiology, genetics, and regulation of immune responses. Interrelationships between nonspecific and specific immune reactions, humoral and cell-mediated immunity, effector cells, and diseases are also stressed; along with research and diagnostic methodologies. Prerequisites: Biology 221 and 466; Chemistry 221 and 222.

Graduate Students Only

BIOL-700. Environmental Biology Credit 3 (3-0)
The scientific study of man’s living and non-living environment. The course emphasizes how our technologies and cultures impact the earth’s ability to sustain both human civilization and the earth’s biodiversity. Prerequisites: None.

BIOL-701. Biological Seminar Credit 1 (0-2)
Faculty will present lectures on their research areas to acquaint students with research opportunities in the department. Prerequisites: None.

BIOL-702. Biological Seminar Credit 1 (0-2)
Oral and written presentations by students on special topics and recent advances in the field of Biology. Strategies for writing a thesis will be discussed, and the preparation by students of a short proposal for thesis research will be encouraged. Prerequisites: None.

BIOL-703. Experimental Methods in Biology Credit 4 (2-4)
An introduction to the scientific method, basic techniques, and equipment used in experimental research in Biology. The course will provide a foundation for enabling students to initiate and conduct independent research. Prerequisites: None.

BIOL-704. Cell and Molecular Biology Credit 3 (3-0)
A course that integrates the most recent advances in molecular biology of structure and function in cells. Prerequisite: Biology 462.

BIOL-712. Master’s Project Credit 3 (0-6)
In this course the student will conduct a research project under the supervision of an advisor. A written proposal, a final report, and an oral presentation and defense of the project before the project committee are required.

BIOL-739. Radio-isotope Techniques and Radiotracer Methods Credit 4 (2-4)
The techniques employed in the handling and measurement of radio-isotopes and their use as tracer agents in biological investigations.

BIOL-740. Essentials of Plant Anatomy Credit 3 (2-2)
A study of the growth, development and organization of roots, stems, leaves, and reproductive organs of higher plants. Lectures, discussions, field trips, and the laboratories are employed in the presentation of this course.

BIOL-741. Applied Plant Ecology Credit 3 (2-2)
A study of the relations of plants to their environment with emphasis on climate and soil factors influencing their structure, behavior and distribution. Prerequisite: Biology 640, 740, or equivalent.

BIOL-742. Physiology of Vascular Plants Credit 3 (2-2)
Selected topics on the physiology of higher plants. Relationships of light quality, intensity, and periodicity to plant growth and reproduction: photosynthesis and photoperiodism. Chemical control of growth and reproduction, and the general aspect of plant metabolism. Lectures, conferences, laboratory work and field studies of higher plant ecology.
BIOL-743. Developmental Plant Morphology Credit 3 (2-2)
Growth and differentiation from a cellular viewpoint with emphasis on quantitative description and experimental study of development phenomena.

BIOL-744. Plant Nutrition Credit 3 (2-2)
A study of the subcellular organization of plants, inorganic and organic metabolism and respiration.

BIOL-749. Recent Advances in Cell Biology Credit 3 (3-0)
A course designed to present recent trends concerning functions of organized cellular and subcellular systems. Current research as it relates to the molecular and fine structure basis of cell function, replication, and differentiation will be discussed.

BIOL-750. Microscopy Technique Credit 3 (1-4)
This course is designed to develop the skills required to prepare cells, tissue, and organs for microscopic observation and study. Lectures will emphasize central concepts in microscopy. Prerequisites: Biology 201 and 462. Biology 465 is recommended.

BIOL-759. Experimental Developmental Biology Credit 3 (1-4)
This course is designed to provide students with a better understanding and appreciation of experimentation and experimental results in the area of developmental biology. Laboratory projects are experimental studies aimed at encouraging the reading and understanding of research papers in the literature. Prerequisite: Biology 561 or graduate standing.

BIOL-765. Introductory Experimental Zoology Credit 3 (2-2)
Studies of fertilization, breeding habits, regeneration, growth and differentiation of certain invertebrates and vertebrates from the experimental approach. Emphasis will be placed on laboratory procedures on the frog and the chick.

BIOL-780. Animal Physiological Ecology Credit 3 (3-0)
An introduction to the physiological adaptations of individuals that enable them to make the internal adjustments necessary to grow and reproduce in changing environments. This course will emphasize the physiological strategies for nutrient acquisition, gaseous exchange, water and ion balance, and thermal tolerance. Prerequisites: Biology 310 and 462.

BIOL-788. Comprehensive Examination Credit 0 (0-0)
This course is the recording mechanism for students to meet the Comprehensive Examination requirement. The student must register for this “course” the semester he/she will take the Comprehensive Examination and the student must earn a P for pass.

BIOL-862. Biology Thesis I Credit 3 (0-6)
Master’s level research in biology. Prerequisite: Consent of advisor.

BIOL-863. Biology Thesis II Credit 3 (0-6)
Master’s level research in biology. Prerequisites: Biology 862 and consent of advisor.

Graduate Faculty

Department: Biology
Chair: Dr Goldie Byrd

David W. Aldridge, B.S., M.A University of Texas, Arlington; Ph.D., Syracuse University; Postdoctoral, Woods Hole Marine Biological Laboratories; Professor and Associate Dean for Research and Graduate Programs
Jerry Bennett, B.S., Tougaloo College; M.S., Atlanta University; Ph.D., Iowa State University; Associate Professor
Goldie S. Byrd, B.S., North Carolina A&T State University; Ph.D., Meharry Medical College; Post-doctoral, Meharry Medical College; Professor and Chairperson
Roy Coomans, B.S., Eckerd College; Ph.D., University of North Carolina-Chapel Hill; Associate Professor
Doretha B. Foushee, B.S., Shaw University; M.S., North Carolina Central University; Ph.D., University of Maryland at College Park; Associate Professor
Andrew G. Goliszek, B.S., University of West Florida; M.S., Ph.D., Utah State University; Postdoctoral, Wake Forest University; Associate Professor
Ethel Gordon, B.A., Southern Illinois University; M.S., Northeastern University; Ph.D., Rutgers University and the University of Medicine & Dentistry of New Jersey, Robert Wood Johnson Medical School; Associate Professor

Joseph Graves, A.B., Oberlin College; M.S., University of Lowell; Ph.D., University of Michigan; Ph.D., Wayne State University; Professor and Dean for Division of University Studies

Minnie Holmes-McNary, A.S., University of Parkland College; B.A., University of Illinois-Springfield; B.S. University of Illinois-Springfield; Ph.D. University of Illinois at Urbana Champaign; Associate Professor

Patrick Martin, B.S., Virginia Union University; Ph.D., University of Virginia; Associate Professor

Perpetua Muganda, B.S., Lock Haven State College; M.S., Howard University; Ph.D., Indiana University School of Medicine; Professor

Mary A. Smith, B.S., M.S. Morgan State University; Ph.D. Cornell University; Post-doctoral: Cornell University and Michigan State University. Associate Professor and Associate Chairperson

Catherine White, B.S., Johnson C. Smith University; Ph.D., Wayne State University; Associate Professor

Joseph J. Whittaker, A.B., Talladega College; Ph.D., Meharry Medical College; Post-doctoral: Purdue University and Washington University; Associate Professor
OBJECTIVES

The Department of Business Education offers a program of study leading to the Master of Arts in Teaching—Business Education (MAT—BE). The Master of Arts in Teaching—Business Education Degree Program is designed for college graduates who have already earned a bachelor’s degree in a business discipline and have decided to enter the teaching profession. Many already are lateral entry teachers or prospective teachers who are taking coursework before entering the classroom. The Master of Arts in Teaching—Business Education will enable candidates to bring content knowledge to the graduate degree, and have the opportunity to develop the knowledge skills, and dispositions needed to become excellent teachers.

The MAT—BE program prepares candidates for careers in public education, as business educators. In addition, candidates seeking the Licensure-only Program may enroll in the Post-Baccalaureate Program and complete the courses needed.

ACCREDITATION

All Teacher Education Programs are accredited by the National Council for Accreditation of Teacher Education (NCATE) and approved by the North Carolina Department of Public Instruction. The Business Education Programs are also accredited by AACSB International.

CAREER OPPORTUNITIES

The Master of Arts in Teaching—Business Education prepares candidates for positions as business educators in the secondary schools and middle schools (Grades 7—12). Candidates who already hold an undergraduate degree in a business discipline but do not already hold a teaching license in Business Education may complete Phase I of the program to earn the “A” license and complete Phase II to earn the master’s degree and the “M” license.

DEGREE OFFERED

Master of Arts in Teaching—Business Education

PROGRAM REQUIREMENTS

Students with any undergraduate business major are encouraged to apply. The program is designed to serve those who have not already earned a teaching license in Business Education. The program is in two phases. Phase I completes the work needed to earn the “A” license in Business Education and must be completed before admission to Phase II, which completes the program of study for the master’s degree and earns the “M” license. The program requires 39 semester hours, 21 of which are in Phase I and 18 in Phase II. There is a business education internship (3 credit hours) and a thesis requirement (3 credit hours). Candidates without an undergraduate business degree cannot be admitted to this program.

Transition to Phase II of the program also requires a passing score on the Praxis II in Business Education (0100), a GRE score and letter(s) of recommendation. Formal admission to the Teacher Education Program is required after the candidate has completed 9 credit hours with a grade of 3.0 or higher.
Phase I Courses (21 required credit hours)
All candidates pursuing the MAT—BE must complete the following Phase I courses:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUED 624—E-Commerce Design and Implementation</td>
<td>3</td>
</tr>
<tr>
<td>BUED 675—Instructional Methods in Business Education</td>
<td>3</td>
</tr>
<tr>
<td>BUED 682—Curriculum, Instructional Planning and Assessment in Business Education Programs</td>
<td>3</td>
</tr>
<tr>
<td>BUED 699—Internship in Business Teacher Education</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 619—Learning Theories</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 624—Teaching Reading in Secondary Schools</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 625—Theory of American Public Education</td>
<td>3</td>
</tr>
</tbody>
</table>

Phase II Courses (12 required credit hours)
All candidates completing Phase II of the MAT—BE must complete the following courses:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUIN 711—Research Design and Methodologies</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 720—Curriculum and Instruction</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 729—Diversity Issues in K-12 Schools</td>
<td>3</td>
</tr>
<tr>
<td>BUED 799—Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Courses (6 elective credit hours)
While completing Phase II, all candidates must complete two (6 credit hours) of the following electives:

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUAD 713—Business Applications Development</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 716—Strategic Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 718—Management & Organization Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 719—Information Systems Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 732—Training and Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Admission Criteria
To be admitted to the MAT—BE (Phase I), candidates must have earned a bachelor’s degree in a business discipline, have an undergraduate GPA of 2.5 or better or a passing score on the Praxis I, complete any required pre-requisites, and meet all other criteria set by the Graduate School. Admission to Phase II of the program requires completion of all Phase I courses with a GPA of 3.0 or higher, a passing score on the Praxis II (0100), filing for the “A” license, recommendation from the candidate’s principal or three recommendations from other persons who know the candidate’s interaction with children or adolescents, and a GRE or MAT score.

BUSINESS EDUCATION COURSES WITH DESCRIPTIONS

BUED 624. E-Commerce Design and Implementation Credit 3 (3-0)
This hands-on course focuses on the design and implementation of an e-business site on a live server. Emphasis is given to effective design of Web pages, particularly the data collection forms such as the order and credit forms and how they interface with other business systems. A final project requires students to demonstrate the efficiency of their designs to a panel of external evaluators. Prerequisites: BUED 334 or ECT 201 or approval of the chairperson. (F)

BUED 675. Instructional Methods in Business Education Credit 3 (3-0)
This course focuses on helping teacher candidates develop strategies for teaching and assessing business and information technology, including the development of units of instruction, lesson plans, enrichment materials and assessments for effective teaching at the secondary level. Provisions are made for observing and participating in teaching demonstrations. This course includes 60 hours of observation in a public school business classroom. Prerequisites: CUIN 102 & 301, 400; PSYC 320; BUED 339, 334, senior standing, and admission to the Teacher Education Program, or admission to the MAT—BE Program. (F, S)

BUED 682. Curriculum, Instructional Planning and Assessment in Business Education Credit 3 (3-0)
This course focuses on the principles of effective administration and supervision of public school business perspectives, major issues, and trends in business education. Prerequisite: Senior standing or admission to the MAT-BE program. (F, S)

BUED 699. Internship in Business Teacher Education
Credit 3 (1-4)

This course places the teacher candidate in a secondary level business education classroom for a period not less than one semester. It includes purposefully observing instruction, planning lessons, delivering instruction, and assessing students as well as classroom and extra-curricular activities associated with the role of teacher in the public school. Prerequisites: Completion of BUED 675 and passing score in Praxis II. *(This course also requires that an application to complete the internship be filed with the Office of Student Teaching and Internships, School of Education by the deadline.)* (F, S)

Graduate Faculty

Dept: Business Education

Chair: Beryl C. McEwen

Betty F. Chapman
Adjunct Assistant Professor
B.S., Shaw University; M.B.A., North Carolina Central University; Ph.D., Virginia Polytechnic Institute and State University

Karen A. Forcht
Visiting Professor
B.S., Bowling Green State University; M.S., East Texas State University; Ed.D., Oklahoma State University

Frank W. Griffin
Assistant Professor
B.A., University of North Carolina at Chapel Hill; M.A., North Carolina State University, Ph.D., University of North Carolina at Greensboro

Lisa E. Gueldenzoph
Assistant Professor
B.S., Northern Michigan University; M.Ed., Ph.D., Bowling Green State University

Thelma M. King
Associate Professor
B.S., North Carolina A&T State University; M.S., University of North Carolina at Greensboro; Ph.D., Virginia Polytechnic Institute and State University

Ewuukgem Lomo-David
Associate Professor
B.S., Mankato State University; M.Ed., Ed.D., University of Memphis

Beryl C. McEwen
Professor and Chairperson
B.Ed., University of Technology, Jamaica; M.S., Ph.D., Southern Illinois University at Carbondale

Lillie Robinson
Associate Professor
B.A, Howard University; M.S., Ed.D., Virginia Polytechnic Institute and State University

Danielle Winchester
Adjunct Instructor
B.S., M.B.A., University of North Carolina at Greensboro
GENERAL PROGRAM REQUIREMENTS

Each program in the Department is individually accredited and program requirements are defined by the individual programs.

Chemical Engineering

OBJECTIVE

The objective of the graduate program in Chemical Engineering is to provide advanced level study in chemical engineering. The program will serve as preparation for further advanced study at the doctoral level or for advanced chemical engineering practice in industry.

DEGREE OFFERED

Master of Science in Chemical Engineering (MSChE)

GENERAL AND DEPARTMENTAL ADMISSION REQUIREMENTS

All applicants to MSChE program must have earned a bachelor’s degree from a four-year college. Students that meet this requirement may be admitted to the graduate school. Applicants are admitted without discrimination of race, color, creed, sex, religion or national origin. Applicants may be admitted to graduate studies unconditionally, provisionally, or as special students. Unconditional admission to the Master of Science in Chemical Engineering will be granted to graduates of ABET accredited chemical engineering programs that have attained a minimum of a 3.0 Grade Point Average on their overall undergraduate program of study. Provisional admission may be granted to persons with other qualifications. Applicants for provisional admission will be evaluated on a case-by-case basis.

A student admitted provisionally is required to meet with the CHEN Director to develop a list of undergraduate courses that must be taken to eliminate deficiencies in the undergraduate transcript. All provisionally admitted students must earn a minimum of a 3.0 grade point average on the first nine graduate course credits they complete. In addition, a “B” grade point average must be earned on all non-credit undergraduate courses, if any, required as a condition of admission. In addition to these provisions, other conditions may be imposed on a case-by-case basis as approved by the Graduate School.

The Master of Science in Chemical Engineering program consists of three distinct options: a thesis option, a project option and a course work option. Requirements for each of the options are given below:

<table>
<thead>
<tr>
<th>Option</th>
<th>Semester Hours Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis</td>
<td>24 Credits of Courses and 6 Credits of Thesis</td>
</tr>
<tr>
<td>Project</td>
<td>30 Credits of Courses and 3 Credits of MS Project</td>
</tr>
<tr>
<td>Course Work</td>
<td>33 Credits of Courses</td>
</tr>
</tbody>
</table>

All students pursuing any of the MSChE options must complete four (4) courses from the MSChE core courses. In addition, students must enroll in the MSChE seminar each semester. Seminar credits do not count toward graduation requirements. The four (4) core courses must be selected from the following list:

<table>
<thead>
<tr>
<th>Number</th>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN 620</td>
<td>Advanced Chemical Engineering Analysis</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>
Thesis Option: All students enrolled in this program must take six (6) credit hours of thesis and twenty-four (24) credit hours of courses. Of the twenty-four (24) credit hours of courses, at least nine credit hours of courses must be at the 700 level and at least four courses (12 credit hours) from the MSChE core courses list. With the approval of the thesis advisor, a student may take nine (9) credit hours of graduate courses from outside the CHEN Department in the areas of Mathematics, Science and Engineering. Thesis option students must pass an oral, public defense of their work. The defense is evaluated by a committee of at least three faculty who are appointed by the thesis advisor and the CHEN Director. The defense committee serves as a professional review of the quality of the student’s work and, in conjunction with the academic advisor, assists the student in the research work required for the thesis. An affirmative vote by a majority of the committee after the defense is necessary for the student to pass. No comprehensive course exam is required.

Project Option: This option requires 30 credits of course work and 3 credits of project work (CHEN 796). The advisor and student select a suitable project of mutual interest to both. No formal advisory committee is required for the option. The project option may interest those who wish to investigate a specific problem and write a technical report. Of the thirty credit hours of courses, at least twelve credit hours of courses must be at 700 level. Students must take four courses (12 credit hours) from the MSChE core courses. With the approval of the MSChE Director and/or project advisor, a student may take nine credit hours of graduate courses from outside the CHEN Department. In lieu of a final comprehensive examination, project option students must pass a public, oral defense of their project. The defense is evaluated by a committee of at least three faculty who are appointed by the project advisor and the CHEN Director. One of the committee members will be the student’s advisor. An affirmative vote by a majority of the committee after the defense is necessary for the student to pass. No comprehensive course exam is required.

Course Work Option: This option requires 33 credits of course work approved by the advisor and MSChE Director. Of the thirty-three credit hours of courses, at least fifteen credit hours of courses must be at 700 level and at least four courses (12 credit hours) must be from the MSChE core courses. With the approval of the MSChE Director, a student may take nine credit hours of graduate courses from outside the CHEN Department. No formal advisory committee is needed, but the student must select an advisor. Students wishing to receive advanced training without an interest in solving a publishable problem or in writing a technical report will be attracted to this option. Students in this option may be asked to pass a written comprehensive examination. The examination follows the general course material of the student and is written by three or more examiners selected by the CHEN Director; one shall be the advisor. The student must satisfy the majority of examiners to pass the comprehensive examination. The examination is given during the student’s final semester.

Advanced Undergraduate/Graduate Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits (Lee-Lab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN 600</td>
<td>Advanced Process Control</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 605</td>
<td>Biochemical Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 608</td>
<td>Bioseparations</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 615</td>
<td>Fuels and Petrochemicals</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 618</td>
<td>Air Pollution Control</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 620</td>
<td>Advanced Chemical Engineering Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 622</td>
<td>Pollution Prevention</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 625</td>
<td>Basic Food Process Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 630</td>
<td>Transport Phenomena</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 635</td>
<td>Mixing Processes and Equipment Scale-up</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 640</td>
<td>Computer Aided Process Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 645</td>
<td>Environmental Remediation</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 655</td>
<td>Nanostructured Materials and Engineering Applications</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>CHEN 660</td>
<td>Selected Topics in Chemical Engineering Var.</td>
<td>Var.1-3</td>
</tr>
<tr>
<td>CHEN 665</td>
<td>Introduction to Polymer Science and Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 666</td>
<td>Special Projects in Chemical Engineering</td>
<td>Var. 1-3</td>
</tr>
<tr>
<td>CHEN 670</td>
<td>Solids Processing and Particle Technology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MCEN 610</td>
<td>Biological Applications of Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>Graduate Only Courses</td>
<td></td>
</tr>
<tr>
<td>CHEN 710</td>
<td>Transport Phenomena II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 720</td>
<td>Advanced Chemical Reaction Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 730</td>
<td>Advanced Biochemical Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 740</td>
<td>Advanced Chemical Process Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 750</td>
<td>Separation Processes</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 760</td>
<td>Advanced Chemical Engineering Thermodynamics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 786</td>
<td>Special Chemical Engineering Project</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 789</td>
<td>Special Topics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 792</td>
<td>Chemical Engineering Master’s Seminar</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td>CHEN 793</td>
<td>Master’s Supervised Teaching</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 794</td>
<td>Master’s Supervised Research</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 796</td>
<td>Master’s Project</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CHEN 797</td>
<td>Master’s Thesis</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

CHEMICAL ENGINEERING COURSES AND DESCRIPTIONS

CHEMICAL ENGINEERING GRADUATE/ADVANCED UNDERGRADUATE COURSES

CHEN-600. Advanced Process Control
Credit 3 (3-0)
The course covers advanced methods for controlling chemical processes: adaptive control, feed forward control, cascade control, multivariable control, multi-loop control, decoupling, and deadtime compensation. Emphasis is placed on computer design. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

CHEN-605. Biochemical Engineering
Credit 3 (3-0)
The course covers basic phenomena involved in biological systems, biochemical reaction systems, microbiology, and biological processes. Application of engineering methods to the design and control of biological systems. Biochemical production of industrial chemicals. Biological waste treatment. Immobilized enzyme technology. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

CHEN-608. Bioseparations
Credit 3 (3-0)
The course is an introduction to the separation and purification of biochemicals. Separation processes are characterized as primarily removal of insolubles, isolation of products, purification or polishing. Processes covered include filtration, centrifugation, cell disruption, extraction, absorption, elution chromatography, precipitation, ultrafiltration, electrophoresis and crystallization. Students are required to complete a design project on a bioseparation process. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

CHEN-615. Fuels and Petrochemicals
Credit 3 (3-0)
Topics important to the production of fuels are covered. Topics include extraction and processing of fossil fuels, synfuels, and fuels from renewable resources. Topics also include distillation, refining, fermentation, catalytic reactions, and removal of undesirable by-products. The design of fuel processes include emphasis on economic and environmental impact. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Prerequisites and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEN-618</td>
<td>Air Pollution Control</td>
<td>3 (3-0)</td>
<td>The economic, social and health implications of air pollution and its control are covered. To understand the problems better, the sources, types and characteristics of man-made air pollutants will be discussed. The course will review some of the main regulations and engineering alternatives for achieving different levels of control. An air pollution control system will be designed. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (Course is to be cross-referenced with CIEN 618) (DEMAND)</td>
</tr>
<tr>
<td>CHEN-620</td>
<td>Advanced Chemical Engineering Analysis</td>
<td>3 (3-0)</td>
<td>Solution of chemical engineering problems by advanced mathematical techniques. Solution of uncoupled and coupled momentum, heat and mass transfer problems. Solution of linearized dynamic equations representing staged operations by matrix analysis. Advanced design and optimization of chemical processes. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (Fall)</td>
</tr>
<tr>
<td>CHEN-622</td>
<td>Pollution Prevention</td>
<td>3 (3-0)</td>
<td>The concept of pollution prevention and its application through industrial ecology, risk assessment and life-cycle assessment methodologies are covered. Topics include pollution prevention at the macroscale (industrial sector), mesoscale (unit operations), and microscale (molecular interactions). A process involving membrane separation steps will be designed and analyzed. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)</td>
</tr>
<tr>
<td>CHEN-625</td>
<td>Basic Food Process Engineering</td>
<td>3 (3-0)</td>
<td>This course covers basic food processing topics including food preparation operations. Topics included are slurry flow, processing operations, microbiology and health hazards, diseases and medicines, and their effects on humans. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (Fall)</td>
</tr>
<tr>
<td>CHEN-630</td>
<td>Transport Phenomena</td>
<td>3 (3-0)</td>
<td>A unified approach to momentum, energy, and mass transfer with emphasis on the microscopic approach. Development of the differential transport balances. Applications in solving simple chemical process problems. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (Fall)</td>
</tr>
<tr>
<td>CHEN-635</td>
<td>Mixing Processes and Equipment Scale-up</td>
<td>3 (3-0)</td>
<td>The courses cover practical design concepts of mixing and multi-phase processing in agitated tanks. Strategies for increasing plant throughput, improving contacting and mixing and selecting equipment will be given. This course provides information on: 1) judging the level of difficulty of a mixing process; 2) using practical elements of laminar, transitional and turbulent mixing; 3) mixing times and 4) increasing throughput for all types of systems and power. The course treats jet mixing, gas sparged mixing and mechanical mixing. The course provides basic concepts on using pilot plant studies for process translation and scale-up. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (Spring)</td>
</tr>
<tr>
<td>CHEN-640</td>
<td>Computer-Aided Chemical Process Design</td>
<td>3 (3-0)</td>
<td>The development and use of computer-aided models for process equipment design is stressed. Model results are compared with the ASPEN PLUS simulation package. Students study the interrelationships between design and process variables using computer simulation. Optimization methods are applied to chemical process design. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)</td>
</tr>
<tr>
<td>CHEN-645</td>
<td>Environmental Remediation</td>
<td>3 (3-0)</td>
<td>The course introduces students to traditional and developmental methods for removal and detoxification of hazardous wastes at contaminated sites and from industrial waste streams. Chemical, thermal, biological and physical methods of remediation are covered. The course deals with hazardous wastes in soils, groundwater, surface water, wastewater ponds and tanks. The emphasis is on destruction, removal and containment methods using mathematical models for contaminant fate and transport. Recent advances in emerging technologies are also discussed. Each student will complete an environmental remediation design project. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)</td>
</tr>
</tbody>
</table>
CHEN-655. Nanostructured Materials and Engineering
This course reviews and analyzes modern chemical engineering material processing technologies. Chemical vapor deposition, crystallization, electrochemical deposition, electroplating and supercritical fluid-based processing techniques for the production of nanostructured materials are discussed. This course also covers the effects of parameters (such as lattice structure, material composition, nucleation, crystal growth phenomena, chemical bonding, etc.) on the catalytic, electronic, optical and physical properties of metallic and ceramic materials. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

CHEN-660. Selected Topics in Chemical Engineering
Topics covered include selected chemical engineering topics of interest to students and faculty. The topics will be selected before the beginning of the course and will be pertinent to the programs of the students enrolled. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

CHEN-665. Introduction to Polymer Science & Engineering
This course is an introduction to the fundamentals of polymer science and engineering. Topics included are polymerization reaction mechanisms and kinetics, molecular weight distribution and measurement methods, crystallinity, morphology and phase transitions, structure-property relationships, solution properties and melt rheology. Commonly used polymer characterization techniques will be introduced. Industrial examples will be emphasized. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

CHEN-666. Special Projects in Chemical Engineering
Study arranged on a special chemical engineering topic of interest to both student and faculty member who will act as supervisor. Topics may be analytical and/or experimental and should encourage independent study. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (Fall, Spring)

CHEN-670. Solids Processing and Particle Technology
This course is an introduction to the fundamentals of solids processing and particle technology. Topics included are properties of particles, transport of particles, size reduction, size enlargement, filtration, centrifugation, clarification, drying of solids, crystallization, flotation, and safety hazards of fine powders. Industrial examples will be emphasized. Prerequisite: Senior standing in Chemical Engineering or permission of instructor. (DEMAND)

MCEN-610. Biological Applications of Engineering
This course covers the application of engineering principles and methods to problems in medicine, the integration of engineering with biology, and the emerging industrial opportunities. Examples from a variety of engineering disciplines will be provided. The ethical concerns associated with some emerging life science applications will be explored. Lab experiments will be utilized in the course to provide hands-on experience with life science concepts. Required is a research paper on an emerging application of life science in engineering. Prerequisite: Consent of instructor. (Spring)

CHEMICAL ENGINEERING GRADUATE ONLY COURSES

CHEN-710. Transport Phenomena II
This course is an advanced treatment of the mechanisms of momentum, heat and mass transport. Emphasis is on methods of solution of transport problems for coupled systems where two or more transport processes interact. Other topics include Non-Newtonian Flow, Boundary Layer Theory, and the Analysis and solution of transport problems of significance in chemical processes. (DEMAND)

CHEN-720. Advanced Chemical Reaction Engineering
This course includes an advanced treatment of chemical reaction engineering including the effect of non-ideal flow and fluid mixing on reactor design, as well as multi-phase reaction system and heterogeneous catalysis and catalytic kinetics. (Fall)

CHEN-730. Advanced Biochemical Engineering

This course is the study of advanced topics in biochemical engineering and enzyme engineering, highlighting research trends. Modeling and optimization of biochemical systems are also covered, as well as the design and analysis of enzyme reactors and the use of enzymes in industrial, environmental and medical applications. (DEMAND)

CHEN-740. Advanced Chemical Process Design Credit 3 (3-0)
Topics in advanced conceptual process engineering such as process analysis, process synthesis and process optimization are covered. Specific topics include: flowsheeting, design variable selection, computational algorithm formulation, separation sequences, heat exchanger networks, recycle-purge processes, process design and simulation software development, including physical and thermodynamic properties packages. (DEMAND)

CHEN-750. Separation Processes Credit 3 (3-0)
Differential and equilibrium stage operations involving non-isothermal and multi-component systems are covered. Other topics covered include simultaneous mass transfer and chemical reaction and dispersion effects. Applications to operations such as absorption, extraction, chromatography, distillation, ion exchange, and membrane separation are also studied. (Spring)

CHEN-760. Advanced Chemical Engineering Thermodynamics Credit 3 (3-0)
This is an advanced course covering topics in molecular thermodynamics of fluid phase equilibria. Statistical thermodynamics and thermodynamics of nonequilibrium processes are introduced. (Spring)

CHEN-786. Special Chemical Engineering Project Credit 3 (3-0)
The course is intended for students who want to complete an analytical or experimental project of interest to the student and instructor. The course may be completed by Project Option students, but does not substitute for Master’s project. (Fall, Spring)

CHEN-789. Special Topics Credit 3 (3-0)
A course designed to allow the introduction of potential new courses on a trial basis or the offering of special course topics on a once-only basis. The course may be offered to individuals or groups of students. A definite topic and the title must be agreed upon by the advisor before the student registers for the course. (DEMAND)

CHEN-792. Master’s Seminar Credit 1 (1-0)
This course provides a forum for the presentation and discussion of selected topics of interest to chemical engineers such as faculty research interests, communication, safety, job prospects and research results. (Fall, Spring)

CHEN-793. Master’s Supervised Teaching Credit 3 (3-0)
Students will gain teaching experience under the mentorship of a faculty member who assists the student in planning for the teaching assignment, observes and provides feedback to the student during the teaching assignment, and evaluates the student upon completion of the assignment. (DEMAND)

CHEN-794. Master’s Supervised Research Credit 3 (3-0)
Students will receive instruction in how to plan, organize and perform research. Research will be performed under the mentorship of a member of the graduate faculty. (DEMAND)

CHEN-796. MS Chemical Engineering Project Credit 3 (3-0)
This is an independent, analytical or experimental project involving research or design in an area of interest to the instructor and the student. This course must be completed by, and only by, Master of Science in Chemical Engineering (MSChE) project option students. A written proposal must be submitted to outline the project. A written report and an oral defense are required. (Fall, Spring, Summer)

CHEN-797. Master’s Thesis Credit 3 (3-0)
Master of Science thesis research will be conducted under the supervision of the thesis committee chairperson leading to the completion of the master’s thesis. The course is only available to thesis option students. (Fall, Spring, Summer)

Mechanical Engineering
OBJECTIVE

The objective of graduate study in Mechanical Engineering is to provide advanced level study in mechanical engineering in four distinct areas of specialization. The Master of Science in Mechanical Engineering is designed to prepare the graduate for Ph.D. level studies or for advanced mechanical engineering practice in industrial consulting or government service. The Ph.D. degree in Mechanical Engineering provides both advanced instruction and independent research opportunities to students. The Ph.D. degree is the highest academic degree offered, and graduates typically are employed in research environments in government laboratories and industries, and as university faculty.

DEGREES OFFERED

Master of Science in Mechanical Engineering (MSME)
Doctor of Philosophy (Ph.D.) in Mechanical Engineering

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Program Description

The Master of Science in Mechanical Engineering is a graduate-level program comprising advanced studies in mechanics and materials, energy and thermal/fluid systems, design and manufacturing, and aerospace.

Admission to the MSME Program

The Master of Science in Mechanical Engineering Program is open to students with a Bachelor’s Degree in Mechanical Engineering or a closely related field from an institution of recognized standing. Application packages may be obtained from the School of Graduate Studies Office, Room 120, Gibbs Hall, North Carolina A&T State University, Greensboro, NC 27411. Applicants may be admitted to the MSME Program under two categories:

1. Unconditional Admission: An applicant may be given unconditional admission to the MSME Program if he/she possesses a MSME bachelor’s degree from an ABET (Accreditation Board for Engineering and Technology) accredited institution, with an overall GPA of 3.0 or better on a 4.0 scale.

 Students admitted on an unconditional basis are also expected to have completed “key courses” below as part of their prior undergraduate program.

 Undergraduate Courses Required:
 - Calculus (minimum of 8 semester hours) Statics
 - Differential Equations Dynamics
 - Applied Engineering Mathematics Strength of Materials
 - Physics (minimum of 6 semester hours) Materials Science

 Chemistry Thermodynamics
 - Fortran Programming Fluid Mechanics
 - Introductory Numerical Methods Mechanical Engineering Design
 - Additional undergraduate course requirements for Specialization in Mechanics and Materials: three (3) credits of Advanced Materials
 - Additional undergraduate course required for Specialization in Energy and Thermal/Sciences: three (3) credits of Heat Transfer
 - Additional undergraduate courses required for Specialization in Design and Manufacturing: three (3) credits of System Dynamics and three (3) credits of Manufacturing Processes

2. Provisional Admission: Applicants may be granted conditional admission if they do not qualify for unconditional admission due to one or more of the following reasons:
 a. Applicant has a baccalaureate mechanical engineering degree from a non-ABET accredited program. Undergraduate engineering degrees from foreign universities fall into this category.
b. Applicant has a baccalaureate degree in engineering but is deficient in key background courses listed in the previous section. These deficiencies must not exceed 12 credit hours.

c. Applicant has an undergraduate degree which is not in engineering but is in a closely related curriculum with a substantial engineering science content. Background deficiencies should not exceed 12 credit hours.

d. Applicant’s undergraduate grade point average is below that required for unconditional admission but there is also academic evidence that the student will successfully complete the degree. Provisional admission status will be changed to unconditional when the student has satisfied the two conditions below:

a. All required course deficiencies have been completed with a 3.0 GPA or above and

b. A minimum of 3.0 GPA is attained on A&T courses taken for graduate credit at the end of the semester in which the 9th semester credit is completed.

Failure to move to unconditional admission when first eligible will result in the student being subject to probation policies. Other admission conditions and program requirements may be imposed on a case-by-case basis as approved by the Dean of the School of Graduate Studies. Provisional admission status is the minimum level of graduate admission classification.

In this classification, students are eligible to register for 700-level courses, provided such courses are approved by the academic advisor.

Change of Admission Status
It is the student’s responsibility to apply to the department for a change in admission status. Students who fail to have their status upgraded run the risk of not receiving graduate credit for any completed graduate courses. Such students also run the risk of academic probation and dismissal.

Program Options
1. Course Work Option

This option consists of thirty-three (33) semester hours of course work. Successful completion of the comprehensive examination is a degree requirement. Approval must be obtained from the Graduate Program Coordinator to elect the course work option. A course work Option student must also take at least five courses from her/his specialization area or in a related area as specified by the academic advisor. A candidate who chooses the course work option must select a permanent advisor who will direct the course of study and who will plan the Final Comprehensive Examination. The advisor may also be part of the group of examiners who conduct the Final Comprehensive Examination. A candidate who selects this option does not have a formal advising committee.

Comprehensive Examination (Course work Option)
Candidates who elect the course work option must sit for a written comprehensive examination of six (6) hours duration, prepared as three independent two-hour examinations. A student must have completed at least twenty-one (21) hours of course work to be eligible to take the comprehensive examination.

One week each semester, at least forty-five (45) days prior to the end of the semester, will be designated as Comprehensive Examination Week. All students wishing to take the examination must do so during this period.

Applications to take the examination must be submitted by the academic advisor to the Graduate Program Coordinator at least thirty (30) days prior to the scheduled beginning date of the examination. The student must initiate this process by contacting his/her advisor with an examination request.

The application should contain a description of the subject areas to be covered by the exam. In consultation with the academic advisor, the Graduate Coordinator assigns an appropriate group of examiners as well as a test time and date. The Graduate Program Coordinator will organize the examination to arrange for as much “common” testing as possible based on material relating to the student’s course work.

The candidate must achieve a satisfactory score in at least two (2) sessions of the examination. A candidate who fails to achieve a satisfactory score at the first attempt may sit again in the next regularly scheduled Comprehensive Examination Week, generally in the following semester. A candidate who fails a second time must petition the Dean of the School of Graduate Studies for permission to sit again. An unfavorable decision will result in dismissal from the program. A third failure will always result in dismissal from the program.
2. Project and Thesis Options

The Project Option consists of thirty (30) semester hours of course work and three (3) hours of special project. It is intended for students with an interest in research or independent study but who do not wish to do a full Master’s thesis. Project Option students must take three hours of MEEN-796 Master’s Project. An oral examination project defense/examination is required.

The Thesis Option consists of twenty-four (24) semester hours of course work and six (6) hours of thesis. Thesis Option students must take six hours of MEEN-797 Master’s Thesis. An original research topic must be chosen in conjunction with the student’s advisor culminating in the preparation of a scholarly thesis. An oral thesis defense/examination is required. This option is intended for students with strong research interests who may desire to pursue further graduate studies towards a Ph.D. degree.

THE DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING

Program Description

The Ph.D. degree program in Mechanical Engineering provides both doctoral-level instruction and independent research opportunities for students. The Ph.D. degree is the highest academic degree offered, and graduates typically are employed in research environments in government laboratories and industries, and as University faculty.

The Ph.D. degree program is highly individualistic in nature, and the student is expected to make a significant contribution to the reservoir of human knowledge by investigating a significant topic within the domain of mechanical engineering. The Ph.D. student must rely heavily on the guidance of the academic advisor and on the academic committee in formulating a plan of work, in setting and meeting the degree goals, and in selecting a dissertation problem. The academic advisor serves to guide the student during the dissertation study phase of the program.

For details concerning admission requirements, see Admission and Other Information elsewhere in this catalog.

Ph.D. Program Policies and Requirements

The doctorate symbolizes the ability of the recipient to undertake original research and scholarly work of the highest levels without supervision. The degree is therefore not granted simply upon completion of a stated amount of course work but rather upon demonstration by the student of a comprehensive knowledge and high attainment in scholarship in a specialized field of study. As a guide however, the student is expected generally to have completed at least twenty-four (24) course credits beyond the master’s degree and a minimum of twelve (12) dissertation credits. The student must demonstrate both the attainment of scholarship and independent study in a specialized field of study by writing a dissertation reporting the results of an original investigation. The student must pass a series of comprehensive examinations in the field of specialization and related areas of knowledge and defend successfully the quality, methodology, findings, and significance of the dissertation.

Advisory Committee and Plan of Graduate Work

An advisory committee of at least four graduate faculty members, one of whom will be designated as chair, will be appointed by the Dean of the School of Graduate Studies upon the recommendation of the Chairperson of the department. The committee, which must include at least one representative of the minor field, will, with the student, prepare a Plan of Graduate Study which must be approved by the department and the School of Graduate Studies. In addition to the course work to be undertaken, the subject of the student’s dissertation must appear on the plan; any subsequent changes in committee or subject or in the overall plan must be submitted for approval as with the original plan.

The program of study must be unified, and all constituent parts must contribute to an organized program of study and research. Courses must be selected from groups embracing one principal subject of concentration, the major, and from a cognate field, the minor. Normally, a student will select the minor work from a single discipline or field. If the advisory committee finds that the needs of the student will be best served by work in an interdisciplinary minor, it has the alternative of developing a special program in lieu of the usual minor.

Other Information
See “Requirements for the Doctor of Philosophy Degree” elsewhere in this catalog for information related to residence requirements, qualifying examination, preliminary examination, comprehensive examination, final oral examination, admission to candidacy, and time limit. Students should also consult the department handbook for more details.

The Dissertation

The doctoral dissertation presents the results of the student’s original investigation in the field of major interest. It must be a contribution to knowledge, be adequately supported by data and be written in a manner consistent with the highest standards of scholarship. Publication is expected.

The dissertation will be reviewed by all members of the advisory committee and must receive their approval prior to submission to the School of Graduate Studies. Three copies of the document signed by all members of the student’s advisory committee must be submitted to the School of Graduate Studies by a specified deadline in the semester or summer session in which the degree is to be conferred. Prior to final approval, the dissertation will be reviewed by the School of Graduate Studies to ensure that the format conforms to its specifications.

The University has a requirement that all doctoral dissertations be microfilmed by University Microfilms International of Ann Arbor, Michigan, which includes publication of the abstract in Dissertation Abstracts International. The student is required to pay for the microfilming service.

INTEGRATED MS/PH.D. PROGRAM

The Integrated MS/Ph.D. program is to attract outstanding and motivated students into the Ph.D. program. A student with a BSME degree from an ABET accredited program with superior credentials (high GPA, high GRE scores, and strong reference letters) may be admitted to this program. Students in this program are admitted to the Ph.D. program on a provisional basis, but will not be formally admitted to the Ph.D. program until completion of the requirements for a master’s degree. The admission is therefore a dual admission such that students are accepted into master’s program unconditionally to pursue a MS degree and accepted into Ph.D. program provisionally at the same time.

A student in this program must complete his/her MSME degree (thesis option) within 24 months with a minimum GPA of 3.5 and must pass the Ph.D. qualifier exam within this time frame to qualify for the unconditional admission to the Ph.D. program. Students who fail the qualifier exam will be dismissed from the Ph.D. program.

Up to two (2) Ph.D. level courses in the MEEN curriculum may be "double counted" to satisfy both requirements of the MS degree and the Ph.D. degree for students in this program. These courses should be at MEEN 800 level and a grade of “B” or better is required for the course to be counted toward both degrees.

MECHANICAL ENGINEERING COURSE SUMMARY

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN 602</td>
<td>Advanced Strength of Materials</td>
</tr>
<tr>
<td>MEEN 604</td>
<td>Intermediate Dynamics</td>
</tr>
<tr>
<td>MEEN 606</td>
<td>Mechanical Vibrations</td>
</tr>
<tr>
<td>MEEN 608</td>
<td>Experimental Stress Analysis</td>
</tr>
<tr>
<td>MEEN 610</td>
<td>Theory of Elasticity</td>
</tr>
<tr>
<td>MEEN 613</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>MEEN 614</td>
<td>Mechanics of Engineering Modeling</td>
</tr>
<tr>
<td>MEEN 618</td>
<td>Numerical Analysis for Engineers</td>
</tr>
<tr>
<td>MEEN 626</td>
<td>Advanced Fluid Dynamics</td>
</tr>
<tr>
<td>MEEN 642</td>
<td>Materials Joining</td>
</tr>
<tr>
<td>MEEN 645</td>
<td>Aluminum Product Design and Manufacturing</td>
</tr>
<tr>
<td>MEEN 646</td>
<td>Advanced Manufacturing Processes</td>
</tr>
<tr>
<td>MEEN 647</td>
<td>Computer Integrated Mechanism Design</td>
</tr>
<tr>
<td>MEEN 649</td>
<td>Design of Robot Manipulators</td>
</tr>
<tr>
<td>MEEN 650</td>
<td>Mechanical Properties and Structure of Solids</td>
</tr>
<tr>
<td>MEEN 651</td>
<td>Aero Vehicle Structures II</td>
</tr>
<tr>
<td>MEEN 652</td>
<td>Aero Vehicle Stability and Control</td>
</tr>
<tr>
<td>MEEN 653</td>
<td>Aero Vehicle Flight Dynamics</td>
</tr>
<tr>
<td>MEEN 654</td>
<td>Advanced Propulsion</td>
</tr>
</tbody>
</table>
MEEN 655 Computational Fluid Dynamics
MEEN 656 Boundary Layer Theory
MEEN 657 Design of Thermal Systems
MEEN 660 Selected Topics in Engineering
MEEN 663 Energy Conversion Systems Design
MEEN 667 Environmental Control
MEEN 668 Gas Dynamics
MEEN 670 Internal Combustion Engines
MEEN 671 Turbo machinery
MEEN 675 Solar Energy Fundamentals and Design
MEEN 702 Continuum Mechanics
MEEN 706 Theory of Vibrations
MEEN 707 Real Time Analysis of Dynamic Systems
MEEN 716 Finite Element Methods
MEEN 719 Advanced ComputerAided Design
MEEN 731 Conduction Heat Transfer
MEEN 732 Convection Heat Transfer
MEEN 733 Radiation Heat Transfer
MEEN 742 Tools, Jigs, and Fixtures
MEEN 743 Instrumentation
MEEN 785 Special Topics
MEEN 792 Master’s Seminar
MEEN 796 Master’s Project
MEEN 793 Master’s Supervised Teaching
MEEN 794 Master’s Supervised Research
MEEN 797 Master’s Thesis
MEEN 804 Advanced Dynamics
MEEN 808 Energy Methods in Applied Mechanics
MEEN 810 Advanced Theory of Elasticity
MEEN 813 Composite Structures
MEEN 814 Mathematical Theory of Elasticity
MEEN 820 Advanced Classical Thermodynamics
MEEN 822 Statistical Thermodynamics
MEEN 824 Irreversible Thermodynamics
MEEN 834 Special Topics in Applied Heat Transfer
MEEN 838 Solar Thermal Energy Systems
MEEN 840 Machine Tool Design
MEEN 846 Stochastic Modeling of Mechanical Systems
MEEN 847 Computational Engineering Dynamics
MEEN 848 Digital Control of Machines and Processes
MEEN 849 Computer Control of Robot Manipulators
MEEN 850 Phase Equilibria
MEEN 858 Mechanical Metallurgy
MEEN 860 Fracture Mechanics
MEEN 885 Special Topics
MEEN 992 Doctoral Seminar
MEEN 993 Doctoral Supervised Teaching
MEEN 994 Doctoral Supervised Research
MEEN 995 Doctoral Preliminary Examination
MEEN 997 Doctoral Dissertation
MEEN 999 Continuation of Thesis/Dissertation for Mechanical Engineering

MECHANICAL ENGINEERING COURSE DESCRIPTIONS

MEEN-602. Advanced Strength of Materials Credit 3 (3-0)
This course covers stress-strain relations as applied to statically indeterminate structures, bending in curved bars, plates, shells, and beams on elastic foundations. Topics include: strain energy concepts for formulation of flexibility matrix on finite elements, bending in beams and plates, Cartesian tensor notation, and matrix structural analysis. Prerequisites: MEEN 336, MATH 432 or equivalent.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEEN-604</td>
<td>Intermediate Dynamics</td>
<td>3 (3-0)</td>
<td>MEEN 337, MATH 432 or equivalent.</td>
</tr>
<tr>
<td>MEEN 606</td>
<td>Mechanical Vibrations</td>
<td>3 (3-0)</td>
<td>MEEN 440 and MATH 431.</td>
</tr>
<tr>
<td>MEEN-608</td>
<td>Experimental Stress Analysis</td>
<td>3 (3-0)</td>
<td>AREN 457 or MEEN 602 or equivalent.</td>
</tr>
<tr>
<td>MEEN-610</td>
<td>Theory of Elasticity</td>
<td>3 (3-0)</td>
<td>MATH 432, MEEN 336 or equivalent.</td>
</tr>
<tr>
<td>MEEN-613</td>
<td>Composite Materials</td>
<td>3 (2-2)</td>
<td>MEEN 260 and MEEN 336 or their equivalents.</td>
</tr>
<tr>
<td>MEEN-614</td>
<td>Mechanics of Engineering Modeling</td>
<td>3 (3-0)</td>
<td>MEEN 210, MEEN 336, MATH 432 or equivalent.</td>
</tr>
<tr>
<td>MEEN-618</td>
<td>Numerical Analysis for Engineers</td>
<td>3 (3-0)</td>
<td>MEEN 210 or equivalent.</td>
</tr>
</tbody>
</table>
MEEN-626. Advanced Fluid Dynamics Credit 3 (3-0)
This course presents an overview of Navier-Stokes Equations, continuity equation, energy equation, inviscid flow, potential theory, complex potentials, and conformal mapping. Prerequisite: MEEN 416 or equivalent.

MEEN-642. Materials Joining Credit 3 (3-0)
This course covers theories and applications of joining of metals, ceramics, and plastics by the standard industrial techniques: arc, gas, electron beam, laser, ultrasonic, and diffusion bonding. Additional topics covered include: phase diagrams, diffusion equations, and physical/chemical properties in joining considerations. Prerequisites: MEEN 446 and MATH 432 or equivalent.

MEEN-645. Aluminum Product Design and Manufacturing Credit 3 (3-0)
This course introduces students to the principles of product and manufacturing process design specifically applicable to aluminum-based materials. Material properties of aluminum are compared with those of other commercial materials. Raw material fabrication and product manufacturing processes are presented. The interactions between processes and material properties are described. Case studies are presented to guide the student in successful completion of design projects. Prerequisites: MEEN 260 and MEEN 474.

MEEN-646. Advanced Manufacturing Processes Credit 3 (3-0)
Theory, application, and design considerations for forming and machining are covered in this course. Additional topics covered include: machines and tooling in modern manufacturing processes, dimensional and tolerance analysis, and control of work piece and tool. Design projects of molds, dies, presses, jigs and fixtures or automated machinery are required. Prerequisites: MEEN 446, MEEN 474, MATH 231, or equivalent.

MEEN-647. Computer Integrated Mechanism Design Credit 3 (3-0)
This is a course in modern computer simulation tools and the underlying theories for synthesis and analysis of mechanical systems consisting of linkages, cams, and gears. Prerequisite: MEEN 440.

MEEN-648. Computer Controlled Manufacturing Credit 3 (3-0)
This course introduces students to computer integrated manufacturing, numerical control and group technology. Topics include: manufacturing process interfacing, discrete process modeling, analysis and control techniques and algorithms, characteristics and software of control computers, sensors for computer control, programmable controllers, and sequential control. Prerequisites: MEEN 446, MATH 331, or consent of the instructor.

MEEN-649. Design of Robot Manipulators Credit 3 (3-0)
This course covers fundamentals of kinematics, dynamics, computer graphics, sensing devices, measurements and control in robot manipulators. Prerequisites: MEEN 440 or equivalent.

MEEN-650. Mechanical Properties and Structure of Solids Credit 3 (3-0)
This course examines the elastic and plastic behavior of matter in relation to its structure, both macroscopic and microscopic. Major representative classes of materials to be examined are thermoplastic materials, elastomers, glasses, ceramics, metals, and composites. Prerequisite: MEEN 460 or equivalent.

MEEN-651. Aero Vehicle Structures II Credit 3 (3-0)
This course covers deflection of structures, indeterminate structures, fatigue analysis, and minimum weight design. Finite element methods and software are utilized. Prerequisite: MEEN 336 and MEEN 474.

MEEN-652. Aero Vehicle Stability and Control Credit 3 (3-0)
This course covers longitudinal, directional, and lateral static stability and control of aerospace vehicles. It also covers linearized dynamics analysis of the motion of a six degree-of-freedom flight vehicle in response to control inputs and disturbance through the use of the transfer function concept, plus control of static and dynamics behavior by vehicle design (stability derivatives) and/or flight control systems. Prerequisites: MEEN 415, MEEN 422, and ELEN 410.

MEEN-653. Aero Vehicle Flight Dynamics Credit 3 (3-0)
This course covers the basic dynamics of aerospace flight vehicles including orbital mechanics, interplanetary and ballistic trajectories, powered flight maneuvers and spacecraft stabilization. Prerequisites: MATH 432, MEEN 337, and MEEN 422.

MEEN-654. Advanced Propulsion Credit 3 (3-0)
This course is a second course in propulsion. It covers the analysis and design of individual components and complete air-breathing propulsion systems including turbo fans, turbo jets, ram jets, and chemical rockets. Prerequisite: MEEN 576.

MEEN-655. Computational Fluid Dynamics Credit 3 (3-0)
This course provides an introduction to numerical methods for solving the exact equations of fluid dynamics. Finite difference methods are emphasized as applied to viscous and inviscid flows over bodies. Students are introduced to a modern computational fluid dynamics computer code. Prerequisites: MATH 432 and MEEN 415 or MEEN 416.

MEEN-656. Boundary Layer Theory Credit 3 (3-0)
This course covers the fundamental laws governing flow of viscous fluids over solid boundaries. Exact and approximate solutions are studied for various cases of boundary layer flow including laminar, transitional and turbulent flow. Prerequisite: MEEN 415 or 416.

MEEN-657. Design of Thermal Systems Credit 3 (3-0)
This is a course in the selection of components for fluid and energy processing systems to meet system performance requirements. Computer-aided thermal design, simulation and optimization techniques, and investment economics are discussed. Design projects are assigned to demonstrate application of these topics. Prerequisites: MEEN 562 and INEN 260.

MEEN-660. Selected Topics in Engineering Credit 3 (3-0)
This course consists of selected mechanical engineering topics of interest to students and faculty. The topics will be selected before the beginning of the course and will be pertinent to the programs of the students enrolled. Prerequisite: Consent of instructor.

MEEN 663. Energy Conversion Systems Design Credit 3 (3-0)
This course covers the design of steam power systems, internal combustion power systems, refrigeration and heat pump systems, and an overview of direct energy conversion devices. Power system design projects are assigned. Prerequisites: MEEN 416 and MEEN 442.

MEEN 667. Environmental Control Credit 3 (3-0)
This course deals with the principles of heating and air conditioning and their applications to design of environmental control systems and determination of building heating and cooling loads. Principal equipment, layout and control are discussed for various types of systems. Prerequisites: MEEN 442 and MEEN 562.

MEEN 668. Gas Dynamics Credit 3 (3-0)
The course covers the principles of one-dimensional compressible fluid flow, normal shocks, and flow with friction, heating, and cooling. Two-dimensional flows are also introduced. Prerequisites: MEEN 415 or MEEN 416 and MEEN 441.

MEEN 670. Internal Combustion Engines Credit 3 (3-0)
This course deals with the fundamental principles of spark-ignition and compression ignition engines, combustion phenomena, the effect of fuel-air mixture, design of components of an internal combustion engine, and testing and performance curves. Design projects are assigned. Prerequisite: MEEN 442.

MEEN 671. Turbomachinery Credit 3 (3-0)
This course covers the application of the cascade method to turbomachines, impulse and reaction turbines, compressible fluid dynamics, gas turbine principles, pumps, compressors and blowers, and the design of turbine elements. Project work is assigned. Prerequisites: MEEN 415 or MEEN 416 and MEEN 442.

MEEN 675. Solar Energy Fundamentals and Design Credit 3 (3-0)
This course deals with the characterization of solar radiation at the earth’s surface. Solar collectors of both flat and concentrating types, and storage and distribution systems are discussed and analyzed. System sizing, design and economic analysis for space heating, water heating and industrial process are covered. Prerequisite: MEEN 562.

MEEN-702. Continuum Mechanics
Credit 3 (3-0)
This course covers the applications of the laws of mechanics and thermodynamics to the continuum. Topics include a rigorous development of the general equations applied to a continuum and the application and reduction of the general equations for specific cases of both solids and fluids. Prerequisite: MEEN 336 or equivalent.

MEEN-706. Theory of Vibrations
Credit 3 (3-0)
Vibration analysis of systems with one-, two- or multi-degrees of freedom are introduced in this course. Topics include instrumentation, continuous systems, and computer techniques. Prerequisites: MEEN 440, MATH 432, and MEEN 606.

MEEN-707. Real Time Analysis of Dynamic Systems
Credit 3 (3-0)
This course covers the theory and application of real time analysis (RTA) used in system identification and machinery fault detection. RTA applications in production engineering and product development are addressed to study short-lived events or to analyze system operation in time domain or frequency domain to identify system characteristics or possible problems. Prerequisite: Consent of instructor.

MEEN-716. Finite Element Methods
Credit 3 (3-0)
This course covers fundamental concepts of the finite element method for linear stress and deformation analysis of mechanical components. Topics include the development of truss, beam, frame, plane stress, plane strain, axisymmetric isoparametric, solid, thermal, and fluid elements. ANSYS and NASTRAN software will be used for solving practical stress analysis problems. Prerequisite: Consent of instructor.

MEEN-719. Advanced Computer-Aided Design
Credit 3 (3-0)
This course covers important methods and techniques for using the computer to aid the design process. Simulation and optimization methods are applied to the design of mechanical systems. Prerequisite: Consent of instructor.

MEEN-731. Conduction Heat Transfer
Credit 3 (3-0)
This course presents the development of the general heat conduction equation and its applications to one-, two-, and three-dimensional steady and unsteady boundary value problems. Closed form and numerical solution techniques are addressed. Prerequisite: MEEN 562 or equivalent.

MEEN-732. Convection Heat Transfer
Credit 3 (3-0)
This course presents the analysis of heat convection in laminar and turbulent boundary layer and pipe flow. Topics include: dimensional analysis, free convection, condensation, and boiling. Prerequisite: MEEN 562 or equivalent.

MEEN-733. Radiation Heat Transfer
Credit 3 (3-0)
A comprehensive treatment of basic theories is reviewed in this course. Topics include: radiation characteristics of surfaces, radiation properties taking account of wave length and direction, and analysis of radiation exchange between idealized and real surfaces. The course also addresses fundamentals of radiation transfer in absorbing, emitting, and scattering media. The interaction of radiation with conduction and convection is discussed. Prerequisite: MEEN 562 or equivalent.
MEEN-742. Tools, Jigs, and Fixtures
This course covers tool design methods, tool-making practices, tool materials and heat treatments, and plastics for tool materials. Additional topics include: design of cutting tools for N/C machine tools, design of size and fixture, basics of clamping, and chucking and indexing for various machining processes. Prerequisites: MEEN 460, MATH 432 or equivalent.

MEEN-743. Instrumentation
Principles and practices of industrial measurement are presented in this course. Topics include: instrument dynamics and response characteristics; theory of transducers for temperature, pressure, flow, motion, force; and other physical phenomena. Special topics in instrumentation, data acquisition and data reduction are covered. A project is assigned in an instrumentation application. Prerequisites: Consent of instructor.

MEEN-785. Special Topics
This course is designed to allow the introduction of potential new courses on a trial basis or special content courses on a once only basis at the Master’s level. The topic of the course and title are determined prior to registration. Prerequisite: Consent of instructor.

MEEN-792. Master’s Seminar
This course provides a forum for discussions and reports of subjects in mechanical engineering and allied fields. Prerequisite: Master’s level standing.

MEEN-793. Master’s Supervised Teaching
Students will gain teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment. Prerequisite: Master’s level standing.

MEEN-794. Master’s Supervised Research
This course is supervised research under the mentorship of a faculty member. It is not intended to serve as the project nor thesis topic of the master’s student. Prerequisite: Consent of instructor.

MEEN-796. Master’s Project
The student will conduct advanced research of interest to the student and the instructor. A written proposal, which outlines the nature of the project must be submitted for approval. This course is only available to project option students. Prerequisite: Master’s level standing.

MEEN-797. Master’s Thesis
Master of Science thesis research will be conducted under the supervision of the thesis committee chairperson leading to the completion of the Master’s thesis. This course is only available to thesis option students. Prerequisite: Consent of advisor.

MEEN-799 - Continuation of Master’s Thesis/Project
This course is for master's students who have completed all required credit hour requirements. Prerequisite: Completion of all course work and thesis/project Credits.

MEEN-804. Advanced Dynamics
This course covers Lagrange’s equations of motion as applied to rigid body dynamics. Topics include: generalized coordinates, generalized conservative and dissipative forces, degrees of freedom, holonomic constraints as related to rigid body motion, calculus of variations, and Hamilton’s equations of motion. Prerequisite: MEEN 604 or equivalent.

The use of energy methods in solving applied mechanics problems is presented in this course. Applications in beams and frames, deformable bodies, plates and shells, and buckling are addressed. Variational methods are also discussed. Prerequisite: MEEN 610 or equivalent.

MEEN-810. Advanced Theory of Elasticity
This is a course in strains, stresses, and the equations of elasticity. Topics include general formulation
of the 2-D boundary value problems and the formulation of certain three-dimensional problems with symmetry. Prerequisite: MEEN 610 or equivalent.

MEEN-813. Composite Structures
Credit 3 (3-0)
This course focuses on the application of composite materials to the design and analysis of structures. The topics covered are two- and three-dimensional hydrothermal anisotropic elastic constitutive equations; classical laminate theory; static stress, vibration, and buckling analysis of laminated beams and plates; environmental effects; and fatigue and fracture of laminated composites. Prerequisite: MEEN 613 or equivalent.

MEEN-814. Mathematical Theory of Plasticity
Credit 3 (3-0)
This course covers stress and strain tensors, transformations and equilibrium, and elastic behavior. Topics include: theories of strength, plastic stress/strain, classical problems of plasticity, including thick-walled pressure vessels and rotating cylinders in elastic-plastic conditions, and slip line theory with applications. Prerequisite: MEEN 610 or equivalent.

MEEN-820. Advanced Classical Thermodynamics
Credit 3 (3-0)
This course covers conditions of equilibrium, processes and thermodynamic systems, first and second order phase transitions, and Nernst Postulate. Prerequisite: MEEN 442 or equivalent.

MEEN 822. Statistical Thermodynamics
Credit 3 (3-0)
Statistical mechanics and macroscopic properties from statistical methods are presented in this course. Topics include: equilibrium information, generalized coordinates, and general variables. Prerequisite: MEEN 442 or equivalent.

MEEN-824. Irreversible Thermodynamics
Credit 3 (3-0)
This course is a study of processes which are inherently entropy producing. Topics include: development of general equations for the theory of minimum rate of entropy production, mechanical processes, life processes, and astronomical processes. Prerequisite: MEEN 820 or equivalent.

MEEN-834. Special Topics in Applied Heat Transfer
Credit 3 (3-0)
Selected special topics in applied heat transfer are presented in this course. Topics include: heat exchanger design and performance, cooling of electronic equipment, and advanced thermal insulation systems. Prerequisite: MEEN 562 or equivalent.

Credit 3 (3-0)
Characteristics of extraterrestrial and terrestrial solar radiation transfer are presented in this course. Topics include: analysis of thermal performance of concentrating and non-concentrating solar collectors, thermal energy storage systems and energy transport systems, and life cycle cost analysis of solar energy systems. Computer simulation software is introduced. Prerequisites: MEEN 731 and MEEN 732 or equivalent.

MEEN-840. Machine Tool Design
Credit 3 (3-0)
This course presents general features and requirements of machine tools and design principles. Topics include: static and dynamic stiffness and rigidity, cutting forces, machine tool vibrations, stability against chatter, damping and dampers, transmission of motion, and standardization of speed change gears. This course will cover the design of constructional elements: bearings, electrical components, pneumatics, hydraulics, material selection, and main spindle layouts. Prerequisites: MEEN 565 and MEEN 646 or equivalent.

MEEN-846. Stochastic Modeling of Mechanical Systems
Credit 3 (3-0)
This course introduces an engineering approach to the analysis of time series and discrete linear transfer function models. Applications include the analysis of experimental data for system modeling, identification, forecasting, and control. Prerequisite: Consent of instructor.
<table>
<thead>
<tr>
<th>Course Code: MEEN-847</th>
<th>Computational Engineering Dynamics</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course introduces computer-oriented methods for the analysis and design of engineering dynamic systems. Topics include: analytical and experimental techniques for model development, design refinement of components in flexible dynamics systems (machine tools, robots, moving vehicles, etc), and optimization techniques for transient response analysis on both constrained and unconstrained systems. Prerequisite: Consent of instructor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-848</th>
<th>Digital Control of Machines and Processes</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course covers control algorithms and design of discrete controllers. Interfaces and command generation for machines and process control are treated. Applications in numerically controlled machines and industrial robots are covered. Prerequisite: MEEN 648.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-849</th>
<th>Computer Control of Robot Manipulators</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course covers basic and adaptive robot control systems, sensory requirements and capabilities, and robotic system diagnosis and applications. Prerequisite: MEEN 649 or Consent of instructor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-850</th>
<th>Phase Equilibria</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course presents interpretation and mathematical analysis of unary, binary and ternary, inorganic, phase equilibria systems with examples for solving practical materials science problems. Topics include: isoplethal and isothermal sections, crystallization paths, and thermodynamic fundamentals. Prerequisite: Consent of instructor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-858</th>
<th>Mechanical Metallurgy</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course covers continuum mechanics and the microscopic basis of plastic behavior. Emphasis is on the development and use of dislocation theory. Prerequisite: Consent of instructor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-860</th>
<th>Fracture Mechanics</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course introduces the student to the concept of stress and strain singularities and their effect on fracture strength and fatigue life of isotropic and anisotropic materials. Topics covered include: computation of the stress-strain field around a crack-tip, stress-intensity-factor, strain energy release rate, J-integral, fracture toughness, residual strength, and fatigue crack propagation life. The course concepts are applied to the design of damage tolerant structures. Prerequisite: MEEN-460 or equivalent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-885</th>
<th>Special Topics</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is designed to allow the introduction of potential new courses on a trial basis or special content courses on a once only basis at the doctorate level. The topic of the course and title are determined prior to registration. Prerequisite: Consent of instructor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-992</th>
<th>Doctoral Seminar</th>
<th>Credit 1 (1-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In this course, doctoral students attend colloquia or seminars. They consist of presentations by doctoral students on dissertation topics and works-in-progress and by guests on important classical, contemporary, or research problems in mechanical engineering. Prerequisite: Doctoral level standing.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-993</th>
<th>Doctoral Supervised Teaching</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This course is designed to introduce the doctoral student to classroom or laboratory teaching under the supervision of a faculty mentor. Doctoral students who serve as teaching assistants or as instructors are required to take this course during the first semester they teach. Others planning to undertake a teaching career are also strongly encouraged to take it. Topics covered include: course planning, classroom teaching, lecture preparation, student evaluation, and grading. The supervisor(s) will observe and provide feedback to the student and evaluate the student’s performance. Prerequisite: Doctoral level standing.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code: MEEN-994</th>
<th>Doctoral Supervised Research</th>
<th>Credit 3 (3-0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is supervised research under the mentorship of a member of the graduate faculty. It is not intended to serve as the dissertation topic of the doctoral student. Prerequisite: Consent of instructor.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Course Code: MEEN-995 | Doctoral Preliminary Examination | Credit 3 (3-0) |
This is required of students who have completed the qualifier examination and who are taking the preliminary examination during the semester. This is a supervised program to help prepare the student for the preliminary examination under the mentorship of the academic advisor. Prerequisite: Must have passed Doctoral Qualifier Exam.

MEEN-997. Doctoral Dissertation

Credit 3 (3-0)
This supervised research serves as the dissertation of the doctoral student. Twelve credits of dissertation are required for graduation. Prerequisite: Doctoral standing and consent of advisor.

MEEN-999. Continuation of Dissertation for Mechanical Engineering

Credit 1 (1-0)
The course is for master’s and doctoral students who have completed all required credit hour requirements. Prerequisite: Completion of all Thesis/Dissertation Credits.

Graduate Faculty

Suresh Chandra, B.S., Banaras Hindu University; M.S., University of Louisville; Ph.D., Colorado State University; Research Professor

William J. Craft, P.E.; B.S., North Carolina State University; M.S. & Ph.D., Clemson University; NIA Liaison Professor and Interim Dean of Graduate School

John Kizito ... Assistant Professor
B.S., Makerere University, Uganda, M.S., Ph.D., Case Western Reserve University

Dhananjay Kumar..Assistant Professor and ORNL Joint Faculty
B.S., Bhagalpur University; M.S., Magadh University, Ph.D., Indian Institute of Technology

DeRome O. Dunn, B.S., M.S., North Carolina A&T State University; Ph.D., Virginia Polytechnic Institute and State University; Associate Professor

Frederick Ferguson, M.S., Kharkov State University; Ph.D., University of Maryland; Professor and Director of NASA/CAR

George J. Filatovs, B.S., Washington University; Ph.D., University of Missouri at Rolla; Professor

Samuel P. Owusu-Ofori, P.E.; B.S., University of Science and Technology - Kumasi, Ghana; M.S., Bradley University; Ph.D., University of Wisconsin at Madison; Boeing Professor of Manufacturing

Devdas M. Pai, P.E.; B.S., Indian Institute of Technology, Madras; M.S., Ph.D., Arizona State University; Professor

Messiha Saad, M.S. North Carolina A&T State University; PhD., North Carolina State University, Assistant Professor

Jappannathan Sankar, B.E., University of Madras; M.E., Concordia University; Ph.D., Lehigh University; Professor and Director of CAMSS

K. N. Shivakumar; B.E., Bangalore University; M.E., Ph.D., Indian Institute of Science; Research Professor and Director for CCMR

Mannur Sundaresan, PhD., Virginia Polytechnic Institute and State University, Associate Professor and Graduate Program Coordinator

Leonard C. Uitenham, B.S., M.S., Ph.D., Case Western Reserve University; Professor and Chairperson.

Shih-Liang Wang, P.E.; B.S., National Tsing Hua University; M.S., Ph.D., Ohio State University; Professor

Cindy Waters ... Adjunct Associate Professor
B.S., M.S., Virginia Tech, Ph.D., NC A&T State University.
Chemistry

Debasish Kuila, Chairperson
Room 348, Science Building
(336) 285-2240
dkuila@ncat.edu

OBJECTIVES
The objective of the Graduate program in Chemistry is to provide theoretical and experimental training for students pursuing M.S. in Chemistry, M.A. in Teaching Chemistry, interdisciplinary M.S. in computer science and engineering, and interdisciplinary Ph.D. in Energy and Environmental Systems. The Department also offers special courses that may be used for teacher renewal certificates.

DEGREES OFFERED
Master of Science- Chemistry
Master of Arts in Teaching - Chemistry

GENERAL REQUIREMENTS
Admission to the Graduate School under one of the following options:
1. Unconditional admission
2. Provisional admission
3. Post-baccalaureate (PBS)

DEPARTMENTAL REQUIREMENTS
Admission to degree programs for the Master of Science in Chemistry and the Master of Arts in Teaching - Chemistry require a baccalaureate degree from an accredited undergraduate institution. Unconditional admission to the Master of Science in Chemistry requires an undergraduate degree in chemistry that includes one year of physical chemistry and one year of differential and integral calculus.

M.S. in Chemistry - Thesis Option

1. Required Core Courses:
 - Chemistry 711 — Structural Inorganic Chemistry: 3.0
 - Chemistry 722 — Advanced Organic Chemistry: 3.0
 - Chemistry 743 — Chemical Thermodynamics: 3.0
 - Chemistry 701 — Seminar: 1.0
 - Chemistry 732 — Advanced Analytical Chemistry: 3.0
 - Chemistry 799 — Thesis Research: 3.0
 - Chemistry 702 — Chemical Research: 3.0 - 9.0
 (A maximum of 9 hrs. may be earned in 702.)

2. Other Requirements:
 a. 2-9 semester hours in electives
 b. Successful completion of 30 credit hours, at least 17 credit hours at 700 level
 c. Satisfactory completion of an examination in foreign language or computer language
 d. Pass comprehensive examinations
 e. Satisfactory presentation and defense (open to public) of a thesis.
 f. Thesis to be submitted to the School of Graduate Studies
 g. One academic year of residence at A&T
 h. Regular attendance of departmental seminars

M.S. in Chemistry – Project Option
This option requires 30 hours of course work and 3 credits of project research (CHEM703). Of the 33 credit hours of course work, at least 17 credits must be at the 700 level. The advisor and the student select a suitable project of mutual interest. A formal advisory committee is required for this option. The project advisor appoints the project committee members after consultation with the student. All project option students are required to defend their findings in a public seminar and submit a final report on their project.
1. Required Courses (17 Credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 701 – Seminar</td>
<td>1.0</td>
</tr>
<tr>
<td>Chemistry 711 – Structural Inorganic Chemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 722 – Advanced Organic Chemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 732 – Advanced Analytical Chemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 743 – Chemical Thermodynamics</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 703 – Masters Project Research</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 715, 725, 735, 745, or 755</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2. Electives (16 Credit hours)

Students are required to complete a minimum of 11 credit hours from the Chemistry electives and the other 5 credit hours from Chemistry and/or non-chemistry electives listed below:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 610 Inorganic Synthesis</td>
<td>2.0</td>
</tr>
<tr>
<td>Chemistry 611 Advanced Inorganic</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 621 Intermediate Organic</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 651 General Biochemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>Chemistry 652 General Biochemistry Lab</td>
<td>2.0</td>
</tr>
<tr>
<td>Chemistry 663* Selected Topics in Chem. Instruction I</td>
<td>1.0</td>
</tr>
<tr>
<td>Chemistry 664* Selected Topics in Chem. Instruction II</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Any 700 level courses included in the Department’s regular offerings.
*These courses are required for Graduate Teaching Assistants.

Non-Chemistry Electives:
Any 600 or 700 level course from the College of Arts & Science, School of Agriculture and Environmental Sciences, or College of Engineering

3. Other Requirements:
 a. Satisfactory completion of an examination in foreign language or computer language
 b. Satisfactory presentation and defense of the project
 c. One academic year of residence at A&T
 d. Pass comprehensive examinations.

Master of Arts in Teaching – Chemistry

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 611</td>
<td>Advanced Inorganic Chemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 621</td>
<td>Intermediate Organic Chemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 732</td>
<td>Environmental Chemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 643</td>
<td>Introduction to Quantum Mechanics</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 651</td>
<td>Advanced Biochemistry</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 703</td>
<td>Methods of Chemistry Instruction Internship I</td>
<td>3.0</td>
</tr>
<tr>
<td>CHEM 704</td>
<td>Methods of Chemistry Instruction Internship II</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 624</td>
<td>Teaching Reading in the Secondary School</td>
<td>3.0</td>
</tr>
</tbody>
</table>
Benchmark - Minimum 3.0 GPA, Pass PRAXIS II, teach successfully for a minimum of one year or complete 12 semester hours of student teaching. Students must take the GRE to advance further.

Phase II (Advanced Studies Coursework) 15 hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 703</td>
<td>Master Project Research</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 711</td>
<td>Research and Inquiry</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 729</td>
<td>Diversity</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 728</td>
<td>Technology</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 721</td>
<td>Advanced Methods</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 713</td>
<td>Learning Theories</td>
<td>3.0</td>
</tr>
<tr>
<td>CUIN 788</td>
<td>Comprehensive Exam</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Exit Requirements -

Notes: See Curriculum & Instruction section for detailed course descriptions.

COURSES FOR ADVANCED UNDERGRADUATES AND GRADUATES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 610</td>
<td>Inorganic Synthesis</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 611</td>
<td>Advanced Inorganic</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 621</td>
<td>Intermediate Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 624</td>
<td>Qualitative Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 631</td>
<td>Electroanalytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 632</td>
<td>Environmental Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 641</td>
<td>Radiochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 642</td>
<td>Radioisotope Techniques and Application</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 643</td>
<td>Introduction to Quantum Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 651</td>
<td>General Biochemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 652</td>
<td>General Biochemistry Lab</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 673</td>
<td>Introduction to Computational Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 674</td>
<td>Computational Methods in Protein Modeling and Drug Design</td>
<td>3</td>
</tr>
</tbody>
</table>

(Inorganic)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 711</td>
<td>Structural Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 716</td>
<td>Selected Topics in Inorganic Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

(Organic)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 721</td>
<td>Elements of Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 722</td>
<td>Advanced Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 723</td>
<td>Organic Chemistry</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 726</td>
<td>Selected Topics in Organic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 727</td>
<td>Organic Preparations</td>
<td>1-2</td>
</tr>
</tbody>
</table>

(Biochemistry)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 756</td>
<td>Selected Topics in Biochemistry</td>
<td>3</td>
</tr>
</tbody>
</table>

(Analytical Chemistry)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 731</td>
<td>Modern Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 732</td>
<td>Advanced Analytical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 736</td>
<td>Selected Topics in Analytical Chemistry</td>
<td>3</td>
</tr>
</tbody>
</table>
CHEM 741 Principles of Physical Chemistry I
CHEM 742 Principles of Physical Chemistry II
CHEM 743 Chemical Thermodynamics
CHEM 744 Chemical Spectroscopy
CHEM 746 Selected Topics in Physical Chemistry
CHEM 748 Colloid Chemistry
CHEM 749 Chemical Kinetics

RESEARCH AND SPECIAL TOPICS

- **CHEM 701** Seminar
- **CHEM 702** Chemical Research
- **CHEM 715** Special Problems in Inorganic Chemistry
- **CHEM 725** Special Problems in Organic Chemistry
- **CHEM 735** Special Problems in Analytical Chemistry
- **CHEM 745** Special Problems in Physical Chemistry
- **CHEM 755** Special Problems in Biochemistry

CHEMICAL INSTRUCTION

- **CHEM 663** Selected Topics in Chemistry INSTRUCTION I
- **CHEM 664** Selected Topics in Chemistry INSTRUCTION II
- **CHEM 765** Special Problems in Chemistry INSTRUCTION I
- **CHEM 766** Special Problems in Chemistry INSTRUCTION II
- **CHEM 767** Special Problems in Chemistry INSTRUCTION III
- **CHEM 768** Special Problems in Chemistry INSTRUCTION IV

COURSES WITH DESCRIPTION IN CHEMISTRY

Advanced Undergraduate and Graduate

CHEM-610. Inorganic Synthesis
Discussion of theoretical principles of synthesis and development of manipulative skills in the synthesis of inorganic substances. Prerequisites: One year of organic chemistry; one semester of quantitative analysis.
Credit 2 (1-3)

CHEM-611. Advanced Inorganic Chemistry
A course in the theoretical approach to the systematization of inorganic chemistry. Prerequisite: Chemistry 442.
Credit 3 (3-0)

CHEM-621. Intermediate Organic Chemistry
An in-depth examination of various organic mechanisms, reactions, structures, and kinetics. Prerequisite: Chemistry 222.
Credit 3 (3-0)

CHEM-624. Qualitative Organic Chemistry
A course in the systematic identification of organic compounds. Prerequisite: One year of Organic Chemistry.
Credit 5 (3-6)

CHEM-631. Electroanalytical Chemistry
A study of the theory and practice of polarography, chronopotentionmetry, potential sweep chronamperometry and electrodeposition. The theory of diffusion and electrode kinetics will also be discussed along with the factors that influence rate processes, the double layer, absorption and catalytic reactions. Prerequisite: Chemistry 431 or equivalent.
Credit 3 (3-0)
CHEM-632. Environmental Chemistry Credit 3(3-0)
This course begins with an overview of environmental science and technology. The course covers the study of the sources, reactions, transport, effects, and fates of chemical species in water, soil, and air. Different types of water pollutants, inorganic and organic air pollutants and pollutants in the soil will be discussed in detail. Sources, chemistry, and treatment of hazardous wastes will also be addressed. Finally, some of the analytical methods used in the determination of water and air pollutants will be covered in this course. Prerequisites: CHEM 221, 231, and 431 or permission of the instructor.

CHEM-641. Radiochemistry Credit 3 (3-0)
A study of the fundamental concepts, processes, and applications of nuclear chemistry, including natural and artificial radioactivity, sources, and chemistry of the radioelements. Open to advanced majors and others with sufficient background in chemistry and physics. Prerequisite: Chemistry 442 or Physics 406.

CHEM-642. Radioisotope Techniques and Applications Credit 2 (1-3)
The techniques of measuring and handling radioisotopes and their use in chemistry, biology, and other fields. Open to majors and non-majors. Prerequisite: Chemistry 102 or 105 or 107.

CHEM-643. Introduction to Quantum Mechanics Credit 4 (4-0)
Non-relativistic wave mechanics and its application to simple systems of means of the operator formulation. Prerequisites: Chemistry 442 and Physics 222. Co-requisite: Mathematics 300.

CHEM-651. General Biochemistry Credit 3 (3-0)
A study of modern biochemistry. The course emphasizes chemical kinetics and energetics associated with biological reactions and includes a study of carbohydrates, lipids, proteins, vitamins, nucleic acids, hormones, photosynthesis, and respiration. Prerequisites: Chemistry 431 and 442.

CHEM-652. General Biochemistry Credit 3 (3-0)
This is a companion laboratory to Chemistry 651. Experimentation will include isolation and characterization of biochemical substances as well as studies of physical properties. Students will be introduced to a variety of techniques including high performance liquid chromatography, electrophoresis, and centrifugation. Corequisite: Chemistry 651. Prerequisites: Chemistry 432 and 444.

CHEM-673. Introduction to Computational Chemistry Credits 3(2-2)
This course introduces students to the basic principles of classical and quantum mechanics and their application to solving chemical/biochemical problems. A hands-on approach will be taken with equal time being spent in the classroom and in the laboratory. Prerequisites: CHEM 107, PHYS 242, and MATH 231 or their equivalent.

CHEM-674. Computational Methods in Protein Modeling and Drug Design Credit 3(2-2)
This course introduces various computational chemistry methods involved in modeling macromolecular proteins and structure-based drug design. A hands-on approach will be taken with equal time being spent in class and the laboratory. The course includes homology modeling, ab initio threading methods to model proteins from sequence to three-dimensional structures, chemoinformatics and structure-based drug design methods such as QSAR and docking. Prerequisite: CHEM 673.
* Students are required to purchase supplemental materials for this course.

INORGANIC CHEMISTRY

Graduate Students Only
CHEM-711. Structural Inorganic Chemistry Credit 3 (3-0)
A study of the stereochemistry and electronic properties of inorganic substances. Emphasis will be placed upon applications of group theory and upon spectroscopic and physical methods.
CHEM-716. Selected Topics in Inorganic Chemistry Credit 3 (3-0)
A lecture course on advanced topics of Inorganic Chemistry. Prerequisite: Chemistry 611 or permission of the instructor.

ORGANIC CHEMISTRY

Graduate Students Only
CHEM-721. Elements of Organic Chemistry Credit 3 (2-3)
A systematic study of the classes of aliphatic and aromatic compounds and individual examples of each. Structure, nomenclature, synthesis, and characteristic reactions will be considered. Illustration of the familiarity of organic substances in everyday life will be included. In the laboratory, preparation and characterization reactions will be performed.

CHEM-722. Advanced Organic Chemistry Credit 3 (3-0)
Recent developments in the areas of structural theory, stereochemistry, molecular rearrangement and mechanism of reactions of selected classes of organic compounds. Prerequisite: One year of Organic Chemistry or Chemistry 721.

CHEM-723. Organic Chemistry Credit 2 (2-0)
An advanced treatment of organic reactions designed to give students a working knowledge of the scope and limitations of the important synthetic methods of Organic Chemistry. Prerequisite: Chemistry 722.

CHEM-726. Selected Topics in Organic Chemistry Credit 3 (3-0)
A lecture course on advanced topics in Organic Chemistry.

CHEM-727. Organic Preparations Credit 1-2 (0-2 to 4)
An advanced laboratory course. Emphasis is placed on the preparation and purification of more complex organic compounds. Prerequisite: One year of Organic Chemistry.

BIOCHEMISTRY

Graduate Students Only
CHEM-756. Selected Topics in Biochemistry Credit 3 (3-0)
A lecture course on advanced topics in Biochemistry.

ANALYTICAL CHEMISTRY

Graduate Students Only
CHEM-731. Modern Analytical Chemistry Credit 3 (2-3)
The theoretical bases of Analytical Chemistry are presented in detail. In the laboratory, these principles, together with a knowledge of chemical properties, are used to identify substances and estimate quantities in unknown samples.

CHEM-732. Advanced Analytical Chemistry Credit 3 (3-0)
A lecture course in which the theoretical bases of Analytical Chemistry and their application in analysis will be reviewed with greater depth than is possible in the customary undergraduate courses. Equilibrium processes, including proton and electron transfer reactions and matter-energy interactions, will be considered. Prerequisite: One year of Analytical Chemistry or Chemistry 731.

CHEM-736. Selected Topics in Analytical Chemistry Credit 3 (3-0)
A lecture course on advanced topics in Analytical Chemistry.
PHYSICAL CHEMISTRY

Graduate Students Only

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit (Lecture-Tutorial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-741</td>
<td>Principles of Physical Chemistry I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>A review of the fundamental principles of Physical Chemistry, including the derivation of the more important equations and their application to the solution of problems. Prerequisite: Mathematics 606 or 622.</td>
<td></td>
</tr>
<tr>
<td>CHEM-742</td>
<td>Principles of Physical Chemistry II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>A continuation of Chemistry 741. May be taken concurrently with Chemistry 741.</td>
<td></td>
</tr>
<tr>
<td>CHEM-743</td>
<td>Chemical Thermodynamics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>An advanced course in which the laws of thermodynamics will be considered in their application to chemical processes. Prerequisite: Chemistry 442 or 742.</td>
<td></td>
</tr>
<tr>
<td>CHEM-744</td>
<td>Chemical Spectroscopy</td>
<td>3 (2-3)</td>
</tr>
<tr>
<td></td>
<td>An advanced course in which the principles and applications of spectroscopy will be considered. Prerequisite: Chemistry 442 or 742.</td>
<td></td>
</tr>
<tr>
<td>CHEM-746</td>
<td>Selected Topics in Physical Chemistry</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>A lecture course on advanced topics in Physical Chemistry. Prerequisite: Chemistry 442 or 742.</td>
<td></td>
</tr>
<tr>
<td>CHEM-748</td>
<td>Colloid Chemistry</td>
<td>2 (2-0)</td>
</tr>
<tr>
<td></td>
<td>A study of the types of colloidal systems and the fundamental principles governing their preparation and behavior. Prerequisite: Chemistry 442 or 742.</td>
<td></td>
</tr>
<tr>
<td>CHEM-749</td>
<td>Chemical Kinetics</td>
<td>4 (4-0)</td>
</tr>
<tr>
<td></td>
<td>A study of the theory of rate processes; application to the study of reaction mechanisms. Prerequisites: Mathematics 222 and Chemistry 442 or 742.</td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH AND SPECIAL PROBLEMS

Graduate Students Only

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit (Lecture-Tutorial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM-663</td>
<td>Selected Topics in Chemistry Instruction I</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td></td>
<td>A study of the curriculum and educational materials developed for use in the Thirteen College Curriculum Program in Physical Science.</td>
<td></td>
</tr>
<tr>
<td>CHEM-664</td>
<td>Selected Topics in Chemistry Instruction II</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td></td>
<td>A continuation of Chemistry 663</td>
<td></td>
</tr>
<tr>
<td>CHEM-701</td>
<td>Seminar</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td></td>
<td>Presentation and discussion of library or laboratory research problems.</td>
<td></td>
</tr>
<tr>
<td>CHEM-702</td>
<td>Chemical Research</td>
<td>2-5 (0.6 to 15)</td>
</tr>
<tr>
<td></td>
<td>A course designed to permit qualified students to do original research in chemistry under the supervision of a senior staff member. May be taken for credit more than once.</td>
<td></td>
</tr>
<tr>
<td>CHEM-703</td>
<td>Masters Project Research</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>The student will conduct advanced research of interest to the student and the instructor. A written proposal, which outlines the nature of the project and the deliverables, must be submitted for approval. This course is only available to project option students. Prerequisite: Graduate standing.</td>
<td></td>
</tr>
</tbody>
</table>
CHEM-715. Special Problems in Inorganic Chemistry Credit 1 (0-2)
A laboratory course designed to introduce the student to the techniques of chemical research by solving minor problems in Inorganic Chemistry. May be taken for credit more than once.

CHEM-725. Special Problems in Organic Chemistry Credit 1 (0-2)
A laboratory course designed to introduce the student to the techniques of chemical research by solving minor problems in Organic Chemistry. May be taken for credit more than once.

CHEM-735. Special Problems in Analytical Chemistry Credit 1 (0-2)
A laboratory course designed to introduce the student to the techniques of chemical research by solving minor problems in Analytical Chemistry. May be taken for credit more than once.

CHEM-745. Special Problems in Physical Chemistry Credit 1 (0-2)
A laboratory course designed to introduce the student to the techniques of chemical research by solving minor problems in Physical Chemistry. May be taken for credit more than once.

CHEM-755. Special Problems in Biochemistry Credit 1 (0-2)
A laboratory course designed to introduce the student to the techniques of chemical research by solving minor problems in Biochemistry. May be taken for credit more than once.

CHEM-765. Special Problems in Chemistry Instruction I Credit 3 (3-0)
A course designed to introduce students to techniques of Chemistry instruction at the college level.

CHEM-766. Special Problems in Chemistry Instruction II Credit 3 (3-0)
A continuation of Chemistry 765.

CHEM-767. Special Problems in Chemistry Instruction III Credit 3 (3-0)
A continuation of Chemistry 766.

CHEM-768. Special Problems in Chemistry Instruction IV Credit 3 (3-0)
A continuation of Chemistry 767.

CHEM-799. Thesis Research I Credit 3 (3-0)
A course designed for conducting thesis research under the supervision of the thesis committee chairperson leading to the completion of the master’s thesis. This course is only available to thesis option students. Prerequisite: Permission of advisor.

CHEM-999. Thesis Research II Credit 0 (0-0)
A continuation of Chemistry 799. A written thesis must be produced and an oral thesis defense is required.

Graduate Faculty

Department: Chemistry
Chair: Dr. Debasish Kuila

William Adeniyi, B.A., Hampton University; M.S., Loyola University; Ph.D., Baylor University, Analytical Chemistry; Associate Professor
Zerihun Assefa, B. S., Addis Ababa University (Ethiopia); Ph.D., University of Maine, Inorganic Chemistry; Associate Professor
Mufeed Basti, B.S., Baath University (Homs, Syria); Ph.D., North Illinois University, Physical Chemistry; Associate Professor
Marion Franks, B.S., Clark-Atlanta University, Ph.D., Virginia Polytechnic Institute and State University, Organic Chemistry, Assistant Professor
Etta Gravely, B.S., Howard University; M.S., North Carolina A&T State University; Ed.D., UNC-Greensboro; Associate Professor
Vallie Guthrie, B.S., North Carolina A&T State University; M.A., Fisk University; Ed.D., American University; Associate Professor
Julius Harp, B.S., York College (Jamaica, NY); Ph.D., Howard University, Organic Chemistry, Associate Professor
Margaret Kanipes, B.S., North Carolina A&T State University, Ph.D., Carnegie-Mellon University, Associate Professor
Debasish Kuila, B.Sc. (Hons.), Calcutta University, India; M.Sc., Indian Institute of Technology, Madras, Ph.D., The City University of New York; Professor
Jothi Kumar, B.Sc., Annamalai University, India; Ph.D., Kansas State University, Professor
Claude N. Lamb, B.S., Mount Union College; M.S., North Carolina Central University; Ph.D., Howard University; Organic Chemistry, Associate Professor
Divi Venkateswarlu, B.S., Sri Venkateswara University, M.S., Kakatiya University, M.Phil. University of Hyderabad, Ph.D., North Eastern Hill University, Assistant Professor
Alex N. Williamson, B.S., Jackson State University; Ph.D., University of Illinois; Inorganic Chemistry, Associate Professor
The Master of Science program in Civil Engineering is administered by the Civil, Architectural, Agricultural and Environmental Engineering (CAAE) Department and is designed to accommodate graduates from Civil and Environmental Engineering, Architectural Engineering, and Bioenvironmental Engineering. The program also accepts qualified graduates from other closely related academic fields.

OBJECTIVE

The objective of the Civil Engineering graduate program is to provide educational opportunities to professionals in the Piedmont Triad for advanced study and research in the following areas: Environmental/Water Resources, Structures/Geotechnical, Transportation/Regional Development, and Energy Resources/Systems.

One or more courses in each of the above areas are scheduled every semester and are offered when student demand meets the University’s minimum enrollment requirement. Students may, therefore, be required to adjust their curriculum plan in response to the availability of courses.

DEGREE OFFERED

Master of Science - Civil Engineering

ADMISSION REQUIREMENTS

All applicants for graduate study must have earned a bachelor’s degree from a four-year accredited college. Prospective students must follow all current procedures of the School of Graduate Studies.

The minimum requirement for unconditional admission to the Master of Science in Civil Engineering Program is an undergraduate degree from an ABET accredited Civil Engineering, Architectural Engineering, or Bioenvironmental Engineering program with a minimum of 3.0 (out of 4.0) Grade Point Average on the overall undergraduate program of study. The other two categories of admission, provisional and special student, may also be used on a case-by-case basis as described below.

Persons may be admitted provisionally to the MSCE program if any of the following conditions apply:

1. The undergraduate degree is not from an ABET accredited CAAE program,
2. The undergraduate degree is not engineering but in a closely related curriculum with a substantial engineering science content,
3. Deficiencies revealed in the analysis of the undergraduate transcript may be removed by the inclusion of no more than 12 semester credit hours.

A student admitted provisionally would be required to meet with a graduate program coordinator to develop a list of undergraduate courses that must be taken to eliminate deficiencies in the undergraduate preparation for graduate study. All provisionally admitted students must earn a 3.0 grade point average on the first nine graduate course credits completed. In addition, a 3.0 grade point average must be earned on all undergraduate courses if any were required as
a condition of admission.

Students who do not hold an engineering undergraduate degree may have course deficiencies exceeding 12 semester credits. These students can be considered for special student status until such time that their deficiencies are reduced so that they can qualify for provisional admission. Persons with massive undergraduate deficiencies, even though they might hold an undergraduate degree, are asked to apply as transfer students to the undergraduate Civil Engineering program. Make-up courses will be evaluated on a case-by-case basis dependent on the student’s area of interest.

Students who are not seeking a graduate degree at NC A&T are also classified as special students. They are admitted to take courses for self-improvement. If a student subsequently wishes to pursue a degree program, he/she must request an evaluation of his/her record. The School of Graduate Studies reserves the right to refuse to accept credits earned while being enrolled as a special student towards a degree program; under no circumstances may the student apply towards a degree program more than twelve semester hours of graduate credits earned as a special student.

In addition to the above application material, foreign nationals or people whose mother tongue is not English are required to provide special information concerning English proficiency and finances. Specifically, these applicants are required to take the standardized “Test of English as a Foreign Language” (TOEFL) and achieve a minimum score of 550.

The School of Graduate Studies accepts application from students who already hold a Master’s degree in other fields or disciplines, but wish to earn a MSCE degree. Consistent with NC AT&T’s School of Graduate Studies’ policy, applicants holding a Master’s degree in another engineering discipline from NC A&T need only complete 18 credit hours to earn a MSCE degree. If the applicant holds an engineering Master’s degree from outside NC A&T, a maximum of 6 credit hours of course work may be transferred.

GENERAL DEPARTMENTAL REQUIREMENTS

A student pursuing a Master of Science in Civil Engineering has the following three options:

1) All course work option
2) Project option, and
3) Thesis option

All students pursuing a Master of Science in Civil Engineering must complete at least one (1) course of the group of Core Courses, six credit hours of advanced math courses (or equivalent math courses), and must enroll in the Master’s Seminar (CIEN 792) every semester in residence.

Civil Engineering Core Courses
CIEN 644 Finite Element Analysis
CIEN 700 Emerging Technologies in Civil Engineering
CIEN 702 Civil Engineering System Analysis
CIEN 721 Advanced Soil Testing for Engineering Purposes

Requirements of the Different Options

All options require a minimum of thirty (30) credit hours and the formation of a formal graduate committee. The graduate committee will consist of the advisor and two additional faculty members selected in agreement between the advisor and the student. The plan of study should be prepared by the student and must be approved by the graduate committee. Specifically, only the courses approved by the graduate committee can be used to satisfy the minimum requirements set forth as “approved course work.” At least half of the credit hours counted in the “approved course work” to satisfy the requirements for a master’s degree must be 700 level courses, that is, courses open only to graduate students. Furthermore, courses numbered 790 and above cannot be used to satisfy the “approved course work” requirements, with the only exceptions as listed below:

All Course Work Option: This option requires thirty (30) credit hours of “approved course work” plus a comprehensive examination that would be administered by the student’s graduate committee during the last semester in residence.

Project Option: The project option requires twenty-seven (27) credit hours of “approved
course work. This option is intended for students wishing to investigate a design problem of current interest to industry or to pursue a practical application. These students will have to demonstrate to the committee their capacity to perform and report work adequately.

Thesis Option: This option requires twenty-four (24) credit hours of “approved course work” and six (6) credit hours of Master’s Thesis (CIEN 797). The student’s graduate committee must formally examine the thesis content and quality, and judge the thesis defense. Furthermore, thesis MUST follow the format required by the School of Graduate Studies.

Grades Required
Grades for graduate students are recorded as follows: A, excellent; B, average; C, below average, but permissible; D, clearly below average and not acceptable; F, failure; S, satisfactory; U, unsatisfactory (all courses CIEN 792 through CIEN 797 will be assigned S or U and will not be counted in the student’s GPA); I, incomplete; W, withdrawal. The following academic requirements are in effect:

1. To earn a degree, a student must have a cumulative average of “B” (3.0 on the 4.0 system).
2. A graduate student is automatically placed on “warning” when his/her cumulative average falls below “B”. The student has one semester to raise his/her average to “B” or above or be placed on Probation. Probationary status will remove a student’s eligibility for a teaching assistantship.
3. A student may be dropped from the degree program if he/she has not achieved a cumulative GPA of 3.0 at the end of the probationary semester.
4. A student may not repeat a required course in which “C” or above was earned.
5. A student may repeat a required course in which “F” was earned. A student may not repeat the course more than once. If a student achieves less than “C” the second time, he/she is dismissed from the degree program.
6. All hours attempted in graduate courses and all grade points earned are included in the computation of the cumulative average of a graduate student.
7. A student who stops attending a course but fails to withdraw officially will be assigned a grade of “F”.
8. All grades of “I” must be removed during the following semester within the prescribed time period.
9. Changing the selected option, for example from thesis to project, requires approval of the Graduate advisor and the Graduate Program Coordinator and may lead to loss of credit for thesis or project credits.

The graduate program must be completed within six (6) consecutive calendar years. Programs remaining incomplete after this time interval are subject to cancellation, revision, or special examination for outdated work. In the event that studies are interrupted for duty in the armed services, the time limit shall be extended for the length of time the student shall have been on active duty providing the candidates resumes graduate work no later than one year following release from military services.

Advanced Undergraduate/Graduate Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN 600</td>
<td>Expert Systems Applications in Civil Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 610</td>
<td>Water and Waste/water Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 614</td>
<td>Stream Water Quality Modeling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 616</td>
<td>Solid Waste Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 618</td>
<td>Air Pollution Control</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 620</td>
<td>Foundation Design I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 622</td>
<td>Soil Behavior</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 624</td>
<td>Seepage and Earth Structures</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 626</td>
<td>Soil and Site Improvement</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 628</td>
<td>Applied Geotechnical Engineering Analysis and Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 630</td>
<td>Advanced Construction Materials</td>
<td>3 (1-6)</td>
</tr>
<tr>
<td>CIEN 640</td>
<td>Advanced Structural Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 641</td>
<td>Design of Reinforced Concrete Structures</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 642</td>
<td>Design of Prestressed Concrete Structures</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 644</td>
<td>Finite Element Analysis I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 646</td>
<td>Structural Design in Steel</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 648</td>
<td>Structural Design in Wood</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>CIEN 650</td>
<td>Geometric Design in Highways</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 652</td>
<td>Urban Transportation Planning</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 656</td>
<td>Traffic Engineering</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>CIEN 658</td>
<td>Pavement Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 660</td>
<td>Water Resources System Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 662</td>
<td>Water Resources Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 664</td>
<td>Open Channel Flow</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 668</td>
<td>Subsurface Hydrology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 670</td>
<td>Construction Engineering and Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 699</td>
<td>Special Projects</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 700</td>
<td>Emerging Technologies in Civil Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 702</td>
<td>Civil Engineering Systems Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 710</td>
<td>Hazardous Waste Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 712</td>
<td>Systems Approach in Waste Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 720</td>
<td>Theoretical Soil Mechanics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 721</td>
<td>Advanced Soil Testing for Engineering Purposes</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 722</td>
<td>Design of Reinforced Earth Structures</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 724</td>
<td>Constitutive Modeling for Geological Media</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 726</td>
<td>Foundation Design II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 729</td>
<td>Geotechnical Aspects of Earthquake Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 730</td>
<td>Reinforced Concrete II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 731</td>
<td>Steel Structures II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 732</td>
<td>Matrix Analysis of Structures</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 733</td>
<td>Advanced Reinforced Concrete</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 734</td>
<td>Advanced Structural Steel</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 735</td>
<td>Wind & Earthquake Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 736</td>
<td>Facility Planning and Site Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 737</td>
<td>Computer-Aided Project Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 738</td>
<td>Energy Management Planning</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 739</td>
<td>Advanced Energy Conservation Systems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 740</td>
<td>Energy Maintenance and Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 741</td>
<td>Professional Practice and Labor Relations</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 752</td>
<td>Public Transportation Systems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 754</td>
<td>Modeling of Transportation Systems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 756</td>
<td>Highway Operations and Safety</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 766</td>
<td>Design of Hydraulic Structures and Machinery</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 785</td>
<td>Selected Topics</td>
<td>1 (1-0), 2 (2-0), 3 (3-0)</td>
</tr>
<tr>
<td>CIEN 786</td>
<td>Special Projects</td>
<td>1 (1-0), 2 (2-0), 3 (3-0)</td>
</tr>
<tr>
<td>CIEN 792</td>
<td>Civil Engineering Master’s Seminar</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td>CIEN 793</td>
<td>Master’s Supervised Teaching</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 794</td>
<td>Master’s Supervised Research</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 796</td>
<td>Master’s Project</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CIEN 797</td>
<td>Master’s Thesis</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

CIVIL ENGINEERING COURSE DESCRIPTIONS

Advanced Undergraduate and Graduate

CIEN-600. Expert Systems Applications in Civil Engineering
Credit 3 (3-0)

Introductory overview of artificial intelligence with an emphasis on Civil Engineering applications: What they are, how they are applied today, a discussion of when they should and should not be used and what goes into building them. Emphasis is on: task selection criteria, knowledge acquisition and modeling, expert system architectures (control and representation issues), and testing and validation. Course requirements will include the design and development of a working system in a chosen application area.

CIEN-610. Water and Waste/water Analysis
Credit 3 (3-0)

Laboratory and field methods for the measurements and analysis of water.

CIEN-614. Stream Water Quality Modeling
Credit 3 (3-0)

Mathematical modeling of water quality in receiving streams. Topics include: The generation
of point and nonpoint sources of pollutants; the modeling and prediction of the reaction, transport and fate of pollutants in the stream; and the formulation and solution of simulation models. (Spring)

CIEN-616. Solid Waste Management Credit 3 (3-0)
This course is the study of collection, storage, transport and disposal of solid wastes. Examination of various engineering alternatives with appropriate consideration for air and water pollution control and land reclamation are emphasized. (Fall)

CIEN-618. Air Pollution Control Credit 3 (3-0)
Introduction to air pollution and its control. Topics include: sources, types, and characteristics of air pollutants; air quality standards; and engineering alternatives for achieving various degrees of air pollution control.

CIEN-620. Foundation Design I Credit 3 (3-0)
This course will introduce the following topics: behavior and design of retaining walls and shallow foundations; earth pressure; bearing capacity and settlement; stress distribution and consolidation theories; settlement of shallow foundations.

CIEN-622. Soil Behavior Credit 3 (3-0)
This course will introduce the following topics: behavior of soil examined from a fundamental perspective; review of methods of testing to define response, rationale for choosing shear strength and deformation parameters for soils for design applications.

CIEN-624. Seepage and Earth Structures Credit 3 (3-0)
This course will introduce the following topics: seepage through soils; permeability of soils; embankment design; compaction; earth pressures and pressures in embankments; slope stability analysis; settlements horizontal movements in embankments; and landslide stabilization.

CIEN-626. Soil and Site Improvement Credit 3 (3-0)
This course will introduce the following topics: methods of soil and site improvement; design techniques for dewatering systems; grouting; reinforced earth; in-situ densification; stone columns; slurry trenches; the use of geotextiles. Construction techniques for each system are described.

CIEN-628. Applied Geotechnical Engineering Analysis and Design Credit 3 (3-0)
Introductory course in subsurface hydrology including: Principles of fluid (water) in saturated and unsaturated materials, well hydraulics, various methods of subsurface water flow systems, infiltration theory, and schemes for ground water basin management.

CIEN-630. Advanced Construction Materials Credit 3 (1-6)
This course covers Construction Materials advanced topics. It includes the chemistry, biology, physics, microstructure and macrostructure of many materials used in construction. Plastics, Portland cement concrete, asphalt cement and asphalt cement concrete, rubber, glazing, masonry, insulation materials, and wood are all covered in some detail. The relationship between materials and their appropriate use in service is stressed. There is substantial hands-on laboratory work involved, including mixing and testing.

CIEN-640. Advanced Structural Analysis Credit 3 (3-0)
This course is a continuation of CIEN-340 emphasizing the more complex concepts of structural analysis for determinate and indeterminate structural systems using both hand calculations and computer applications.

CIEN-641. Design of Reinforced Concrete Structures Credit 3 (3-0)
This course is a continuation of CIEN-540 emphasizing the more complex concepts of reinforced concrete design. The design of continuous beams, two slabs and beams columns are addressed.

CIEN-642. Design of Prestressed Concrete Structures Credit 3 (3-0)
This course uses the ACI and AASHTO codes to analyze and design prestressed concrete structures.
CIEN-644. Finite Element Analysis I Credit 3 (3-0)
Analysis of continuous structural systems as assemblages of discrete elements. Applications of the finite element method is made to the general field of continuum mechanics. Convergence properties and numerical techniques are discussed.

CIEN-646. Structural Design in Steel Credit 3 (3-0)
This course uses the AISC code to analyze and design steel structures.

CIEN-648. Structural Design in Wood Credit 3 (3-0)
This course uses the wood product code to analyze and design wood structures.

CIEN-650. Geometric Design of Highways Credit 3 (3-0)
This course deals with the development and application of geometric design concepts for rural systems. Topics include: functional classifications, design controls and criteria, elements of design, cross section elements, and intersection design.

CIEN-652. Urban Transportation Planning Credit 3 (3-0)
This course introduces urban transport planning using a decision-oriented approach. Discussions focus on the decision-making process, data requirements, evaluation processes, systems performance analysis and program implementation.

CIEN-656. Traffic Engineering Credit 3 (2-2)
Theory and practice of the operation aspects of Transportation Engineering. Specific applications will deal with the operation, design, and control of highways and their networks. Topics include: data collection techniques, traffic flow theory, and various highway capacity methods and their theoretical basis and the various application software available for each topic.

CIEN-658. Pavement Design Credit 3 (3-0)
Application of multilayer theories for design of highways and airport pavement structures. Flexible and rigid pavement design methods are covered with discussions focusing on their theoretical basis and their major differences. Topics include: cost analysis and pavement selection, drainage, earthwork, pavement evaluation, and maintenance.

CIEN-660. Water Resources System Analysis Credit 3 (3-0)
Mathematical modeling techniques. Formulation of mathematical representations of complex water resources systems and their evaluation via linear programming, dynamic programming, non-linear programming, and by the use of formal heuristics. Models for optimal sewer design, optimal sequencing (or capacity expansion) of projects, reservoir systems planning and management are presented.

CIEN-662. Water Resource Engineering Credit 3 (2-2)
This course involves the application of hydrologic and hydraulic principles in the analysis and design of water resources systems. The measurement of ground water parameters and general water quality parameters is covered. Topics covered include: water supply and distribution, reservoirs, water resources system economics, water law, hydroelectric power, flood control, water resources planning and development and drainage.

CIEN-664. Open Channel Flow Credit 3 (3-0)
Advanced topics in open channel flow, design of open channels for uniform and nonuniform flow, wave interference, roughness effects, flow over spillways, water surface profiles, and energy dissipation methods. Some computational methods in open channel flow are presented.

CIEN-668. Subsurface Hydrology Credit 3 (3-0)
Introductory course in subsurface hydrology including: principles of fluid (water) in saturated and unsaturated materials, well hydraulics, various methods of subsurface water flow systems, infiltration theory, and schemes for ground-water basin management.

CIEN-670. Construction Engineering and Management Credit 3 (3-0)
This course concentrates on the solution to problems in Construction Engineering and Management. A variety of problems from the construction industry are presented to the students. The students form teams to develop solutions to these problems. Topics vary with available
projects and student interest. Graduate students select a project in their area of interest for
intensive study and a report.

CIEN-699. Special Projects

Credit 3 (3-0)

Study arranged on a special civil engineering topic of interest to the student and faculty. Topics
may be analytical and/or experimental with independent study encouraged.

GRADUATE STUDENTS ONLY

CIEN-700. Emerging Technologies in Civil Engineering

Credit 3 (3-0)

Provides an overview of the applications of emerging technologies (such as decision support
systems and Geographic Information Systems) in civil engineering. The students are required
to complete a project which includes the design and implementation of one of the types of systems
covered in the course.

CIEN-702. Civil Engineering Systems Analysis

Credit 3 (3-0)

Introduces mathematical modeling techniques for the solution of civil engineering problems.
These include the formulation of mathematical representation of complete civil engineering
systems and their evaluation via linear programming, dynamic programming, non-linear pro-
gramming and the use of formal heuristics. Multiobjective analysis, project management and
civil engineering planning and design are also presented.

CIEN-710. Hazardous Waste Management

Credit 3 (3-0)

Presents a study of the characteristics, treatment, and disposal of hazardous wastes. The topics
include the: the generation and characteristics of hazardous waste, hazardous waste regulations,
transport and fate of hazardous waste in the environment and treatment and disposal
methods. (Fall)

CIEN-712. Systems Approach in Waste Management

Credit 3 (3-0)

Introduces the application of systems analysis methods to the design, analysis and management
of environmental systems. The topics include: characteristics of a system, problems amenable
to systems analysis, optimization models, solution techniques, and case studies in solid waste
management, hazardous waste management, and water quality management. (Spring)

CIEN-720. Theoretical Soil Mechanics

Credit 3 (3-0)

Presents the different theories of consolidation, such as Terzaghi’s Theory, layered systems,
sand drains, approximate three-dimensional theories, and Biot’s poroelastice formulation. The
course will also present theories of elastic and plastic equilibrium in soils including applications
to earth pressure, bearing, bearing capacity, and slope stability problems.

CIEN-721. Advanced Soil Testing for Engineering Purposes

Credit 3 (1-6)

This course allows students to gain laboratory experience with the methods of testing soils for
engineering properties such as compressibility, strength (in triaxial, simple shear, and direct
shear), permeability, and stability.

CIEN-722. Design of Reinforced Earth Structures

Credit 3 (3-0)

Introduces the student to the interaction mechanisms of soil with reinforcement elements. The
applications covered will include the following: reinforced earth, soil nailing, and geotextile/
geofabric strengthening of pavement structures.

CIEN-724. Constitutive Modeling for Geological Media

Credit 3 (3-0)

Introduces the following topics: constitutive models for geological media including piecewise
linear; Mohr-Coulomb: Hvorslev’s and Roscoe’s concepts; role in modeling of in-situ stress;
sequential construction and stress paths; lateral pressure coefficients; dilatation and softening;
arching; pore water pressure; joints and interfaces; and Darcy and non Darcy Laws.

CIEN-726. Foundation Design II

Credit 3 (3-0)

Introduces the analysis and design of foundations and other substructures including the following:
concrete footings with reinforcement; pile foundations; retaining walls; pavements,
load transfer in rail track beds; Cofferdams; caissons and underground structures and openings.

CIEN-729. Geotechnical Aspects of Earthquake Engineering

Credit 3 (3-0)

Introduces the student to the following earthquake related topics: response of soils to seismic
CIEN-730. Reinforced Concrete II Credit 3 (3-0)
This course is a continuation of CIEN 636 emphasizing the more complex concepts of reinforced concrete theory and their application to design. The analysis and design of special concrete structures will be addressed. Prerequisite: Graduate standing and CIEN 636 or consent of the instructor.

CIEN-731. Structural Steel II Credit 3 (3-0)
The design of composite structures, built-up beams, portal frames, and gabled frames are presented. Also addressed are the concepts of limit and plastic design. Prerequisites: Graduate standing and CIEN 635 or consent of the instructor.

CIEN-732. Matrix Analysis of Structures Credit 3 (3-0)
This course reviews Matrix algebra; statically and kinematically indeterminate structures. The student is introduced to the flexibility and stiffness methods as it applies to beams, plane trusses and plane frames. Prerequisite: Graduate standing and CIEN 630 or consent of the instructor.

CIEN-733. Advanced Reinforced Concrete Credit 3 (3-0)
This course is a continuation of CIEN 726 emphasizing the design of reinforced concrete structures. The analysis and design of reinforced concrete structures will be addressed. Prerequisite: Graduate standing and CIEN 726 or consent of the instructor.

CIEN-734. Advanced Structural Steel Credit 3 (3-0)
This course is a continuation of CIEN 727 emphasizing the design of steel building structures. The analysis and design of steel structures will be addressed. Prerequisites: Graduate standing and CIEN 727 or consent of the instructor.

CIEN-735. Wind and Earthquake Design Credit 3 (3-0)
The course applies the principles of structural dynamics to determine the response of buildings to earthquake and wind induced forces. The response spectra is used to evaluate earthquake forces on the building. The behavior of wind and the variation in wind velocity are studied with respect to topography and the building height above ground. The course also investigates the response of building components to hurricanes and tornados. Prerequisites: Graduate standing and CIEN 603.

CIEN-736. Facility Planning and Site Analysis. Credit 3 (3-0)
The course includes strategic and long-range planning concepts, environmental impact studies, population and growth projections. Accessibility, storm water retention, and economics are also discussed. Prerequisite: Graduate standing and consent of the instructor.

CIEN-737. Computer-Aided Project Management. Credit 3 (0-6)
This course uses computer-aided analysis and design in project scheduling, manpower forecasting, cash flow analysis, progress reports, billings and profitability analysis. The emphasis is on the application of micro-computers in the management of a small consulting firm. Prerequisite: Graduate standing and consent of the instructor.

CIEN-738. Energy Management Planning Credit 3 (3-0)
The course presents concepts of energy management planning for multi-building complexes such as universities, hospitals, and schools. Topics include data collection and analysis, facility audits, on-site metering, and the review of maintenance records and utility bills. Prerequisite: Graduate standing and consent of the instructor.

CIEN-739. Advanced Energy Conservation Systems Credit 3 (3-0)
The course includes advanced topics in energy conservation including thermal storage, district heating and cooling, waste heat recovery, and co-generation. Prerequisite: Graduate standing
and consent of the instructor.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIEN-740</td>
<td>Energy & Maintenance Management</td>
<td>3 (3-0)</td>
<td>Graduate standing and consent of the instructor.</td>
</tr>
<tr>
<td>CIEN-741</td>
<td>Professional Practice and Labor Relations</td>
<td>3 (3-0)</td>
<td>Graduate standing and consent of the instructor.</td>
</tr>
<tr>
<td>CIEN-752</td>
<td>Public Transportation Systems</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>CIEN-754</td>
<td>Modeling of Transportation Systems</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>CIEN-756</td>
<td>Highway Operations and Safety</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>CIEN-766</td>
<td>Design of Hydraulic Structures and Machinery</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>CIEN-785</td>
<td>Selected Topics</td>
<td>1-3 (1-0)</td>
<td>A student to select a civil engineering topic of interest to the student to investigate in depth. The topic will be selected by the student and a faculty advisor before the beginning of the semester. The topic must be pertinent to the study program of the student and must be approved by the faculty advisor.</td>
</tr>
<tr>
<td>CIEN-786</td>
<td>Special Projects</td>
<td>1-3 (1-0)</td>
<td>A student to select a project on a special civil engineering topic of interest to the student and a faculty member, who will act as an advisor. The student and faculty advisor must agree upon the project and scope of work before the beginning of the semester. The project may be analytical and/or experimental and encourage independent work. The topic must be pertinent to the program in which the student is enrolled and approved by the faculty advisor. (Fall, Spring)</td>
</tr>
<tr>
<td>CIEN-792</td>
<td>Civil Engineering Master’s Seminar</td>
<td>1 (1-0)</td>
<td>Discussion and presentations of reports of subjects in Civil Engineering and allied fields are included.</td>
</tr>
<tr>
<td>CIEN-793</td>
<td>Master’s Supervised Teaching</td>
<td>3 (3-0)</td>
<td></td>
</tr>
</tbody>
</table>
Students will gain teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment.

CIEN-794. Master’s Supervised Research
Credit 3 (3-0)
Students will receive instruction in how to plan, organize and perform research. Research will be performed under the mentorship of a member of the graduate faculty.

CIEN-796. Master’s Project
Credit 3 (3-0)
The student will conduct advanced research of interest to the student and the instructor. A written proposal, which outlines the nature of the project, must be submitted for approval. This course is only available to project option students.

CIEN-797. Master’s Thesis
Credit 3 (3-0)
Master of Science thesis research will be conducted under the supervision of the thesis committee chairperson leading to the completion of the Master’s Thesis. This course is only available to thesis option students.

Department: Civil, Architectural, Agricultural and Environmental Engineering
Chairperson: Dr. Sameer Hamoush, Jr., P.E.

Peter Rojeski, Jr., B.S., Clarkson College of Technology; M.S., Ph.D., Cornell University (P.E.) Professor
Emmanuel U. Nzewi, B.S., Michigan Tech. Univ.; M.S. & Ph.D., Purdue University (P.E.) Professor
Abolghasem Shahbazi , B.S., University of Tabriz; M.S., University of California at Davis, Ph.D, Pennsylvania State University (F.E.), Professor
Godfrey A. Gayle, B.S., North Carolina A&T State University; M.S., Ph.D, N.C. State University, Professor
Harmohindar Singh, B.Sc., M.Sc., Punjab University; M.S., Ph.D., Wayne State University (P.E.), Professor
Shou-Yuh Chang, B.S., M.S., National Taiwan University; M.S., University of North Carolina at Chapel Hill; Ph.D., University of Illinois at Urbana-Champaign; (P.E.), Professor
M. Reza Salami, B.S., M.E., Virginia Polytechnic Institute and State University; Ph.D., University of Arizona (P.E.) Professor
William Mark McGinley, B.S., M.S.C.E., Ph.D., University of Alberta (P.E.), Professor
Miguel Picornell, B.S., Madrid Polytechnic University; M.S., Ph.D., Texas A&M University (P.E.), Professor
Ronald N. Helms, B.Arch., M.S.A.E., University of Illinois; Ph.D., Ohio State University (P.E.), Professor
Manuel R. Reyes, B.S., M.S., University of the Philippines at Los Banos; M. Phil., Cranfield Institute of Technology, England, Ph.D, Louisiana State University, Associate Professor
Sameer A. Hamoush, B.S., University of Damascus; M.S., University of Nebraska; Ph.D., North Carolina State University (P.E.), Associate Professor & Chair
Ronnie S. Bailey, B.A., Howard University; M.U.P., University of Wisconsin, Associate Professor
Jiann-Long Chen, B.S. National Taiwan University, M.S., Duke University, Ph.D., University of Cincinnati Assistant Professor.
Stephanie Luster-Teasley, B.S., NC A&T State University, M.S., Ph.D. Michigan State University, Assistant Professor
Robert Powell, B.S., Stanford University; M.Arch., M.I.T., (AIA), Assistant Professor
Peggy Fersner, B.S., Virginia Polytechnic Institute; M.S., Clemson University (P.E.), Adjunct Associate Professor
Richard Phillips, B.S., Iowa State University, M.S., N.C. State University; (P.E.), Adjunct Associate Professor
Taher Abu-Lebduh, B.S. & M.S., Yarmouk University (Jordan), Ph.D., Louisiana State University (P.E.), Adjunct Associate Professor
COMPUTATIONAL SCIENCE AND ENGINEERING M.S. PROGRAM

Ajit D. Kelkar, Director
School of Graduate Studies
317 IRC Building, (336) 256-2406/2407
kelkar@ncat.edu
www.cse.ncat.edu

OBJECTIVES

The program is designed with the following objectives:

1. To educate graduate students with a mastery of high performance computer programming tools as well as processing, data acquisition, and analysis techniques.
2. To educate and train students in computational modeling, simulation and visualization.
3. To assist students to relate acquired computational science and engineering knowledge and skills to specific application fields of engineering, science, technology and business.
4. To teach students to develop novel and robust computational methods and tools to solve scientific, engineering, and technological and business problems.
5. To produce highly versatile computational scientists, engineers, technologists, or business executives with a good understanding of the connections among various disciplines, capable of interacting and collaborating effectively with scientists, engineers, and professionals in other fields.
6. To increase the number of graduate professionals available to work in computational science and engineering.
7. To increase the diversity of graduate professionals, especially underrepresented minority and African Americans available to work in the computational science and engineering field.
8. To assist the State of North Carolina and the nation to increase the pool of graduates with training and experience in computational science and engineering, interdisciplinary applications and research.

GENERAL PROGRAM ADMISSION REQUIREMENTS

Candidates seeking admission to the CSE Program for the Master of Science degree must meet the following requirements:

1. Computational Science and Engineering track: Bachelor’s degree in engineering, physics, computer science, or mathematics from an accredited program.
2. Computational Science track: Bachelor’s degree in Chemistry, Biology, Business and Agricultural Sciences.
3. Computational Technology track: Bachelor’s degree in Technology or related field.
4. Official TOEFL scores of at least 550 or better (213 computer-based score) for students whose native language is other than English. In addition all international students are required to submit official GRE scores. Scores should be submitted directly to the School of Graduate Studies.
5. General prerequisites: (1) Calculus through differential equations for the computational science and engineering track, (2) college chemistry and physics, (3) college math (4) elementary numerical analysis or one semester of linear algebra for the computational science and engineering track. These are in addition to the courses in the student’s principal bachelor degree discipline. Programming and working knowledge of at least one high level programming language such as FORTRAN, C++, or Java is also required for the computational science and engineering track, and recommended for other tracks depending on the student’s area of interest. There may also be additional recommended or required prerequisites specific to the needs of a focus area.
Documentation Requirements

The following documents are to be submitted by all applicants.

1. Two official transcripts of all college-level academic work.
2. Three letters of recommendation (for study at the graduate level) from professional associates or supervising faculty/professors from the degree granting institution.
3. An official copy of the TOEFL and GRE score, if applicable, mailed directly to the University from the testing agency.
4. The completed application form and application fee stipulated by the School of Graduate Studies at NC A&T State University.
5. A “Statement of Purpose” in the context of pursuing the M.S. degree in Computational Science and Engineering.

Computational Science and Engineering Tracks

Computational Science and Engineering

This track is designed primarily for students with undergraduate degrees in engineering, physics, mathematics, and computer science who will be trained to develop problem-solving methodologies and computational tools as well as interdisciplinary technical expertise in CSE for solving challenging problems in physical science, engineering, applied mathematics or computer science. This includes domains that are both in the College of Engineering, and the College of Arts and Sciences. The curriculum will emphasize computational sciences and engineering along with training in the domain areas. The goal of this track is to produce scientists and engineers with focus, training and application in computational sciences, scalable computing, physics-based modeling and simulations, and with expertise in the application of computational techniques and principles in their primary domain areas. Qualified undergraduate students can be admitted to this stream if they also meet the admission criteria of their major domain field. Based on their undergraduate degrees, the students in this track would be required to have had an increased level of prior training, courses and exposure to mathematics, including areas such as numerical analysis, and high level programming languages. Students with undergraduate degrees in other science and technology areas may also be admitted, if they meet the admission and course requirements, including prerequisites of the domain department. The areas of specialization will include, but will not be limited to, computational quantum chemistry, computational nuclear and high energy physics, computational solid or fluid dynamics, computational material science, bioengineering, engineering design and automation, applied and environmental geophysics, computational seismology, nonlinear computational mechanics, super fast algorithms for numerical and algebraic computation, and distributed and high performance computing.

Computational Sciences

This track is designed primarily for students with undergraduate degrees in chemistry, biology, business, and agricultural sciences who will be trained to apply or extend computational tools and methods as well as data acquisition, processing and visualization techniques to study computationally intensive problems in life sciences, agricultural and environmental sciences, and business and economics. This track primarily includes domain areas with lesser training in mathematics including numerical analysis, and programming languages and focuses on domains with non-deterministic models. The domains in this track are for the College of Arts and Sciences, the School of Agriculture and Environmental Sciences and the School of Business and Economics. The goal of this track is to produce biological and life scientists, business professionals and economists, and agricultural scientists with focus and expertise in computational sciences and the primary domain areas. Qualified undergraduate students can be admitted to this stream if they also meet the admission criteria of the major domain area. Based on their undergraduate field, the students in this track would be required to take additional mathematics and programming focused courses. Students with undergraduate degrees in other science, engineering and technology areas may also be admitted if they meet the admission and course requirements, including prerequisites for the domain department. The areas of specialization will include, but will not be limited to, bioinformatics, computational genomics, computational physical chemistry, computational biochemistry, and computational finance.

Computational Technology

This track is designed primarily for students with undergraduate degrees in technology disciplines with a focus on computational science and engineering. These technology disciplines currently include computation technology, computer numerical control machining, remote sensing, GIS/GPS data analysis, and nanotechnology with additional potential disciplines in the future. The goal of this track is to produce technologists with a focus and training in computational sciences, and in their primary technology domain area. Students with undergraduate degrees in engineering, mathematics, physics and computer science may also be admitted and must meet the course and curriculum requirements in technology.
PROGRAM OPTIONS AND DEGREE REQUIREMENTS

The program requires 34 credit hours at the graduate level beyond the undergraduate degree distributed as follows:

Thesis Option:
- 27 credit hours for course work at the graduate level,
- 1 credit hour for seminars, and
- 6 credit hours for thesis research.

Project Option:
- 30 credit hours for course work at the graduate level,
- 1 credit hour for seminars, and
- 3 credit hours for graduate masters project.

Year One

Full Semester
- CSE 701 - Applied Probability and Statistics 3cr
- CSE 702 - Comprehensive Numerical Analysis 3cr
- Domain course I 3cr

Spring Semester
- CSE 703 - Data Structures, Software Principles and Programming in Scalable Parallel Computing 3cr
- CSE 704 - Computational Modeling and Visualization 3cr
- Domain course II 3cr

Year Two

Full Semester
- Interdisciplinary course I 3cr
- Interdisciplinary course II 3cr
- Interdisciplinary course III 3cr (for project option)
- Thesis 3cr (for thesis option)
- Seminar 1cr

Spring Semester
- Domain course III 3cr
- Thesis 3cr (for thesis option)
- Master’s Project 3cr (for project option)

All students irrespective of the track that they are registered in must complete the core courses CSE-701, CSE-702, CSE-703 and CSE-704.

All students must complete the Graduate Seminar course CSE 792, which accounts for 1 credit hour.

Students pursuing the thesis option must complete 6 credits hours of CSE 797.

Students pursuing the project option must complete 3 credits hours of CSE 796.

A list of Domain courses and Interdisciplinary courses from which a student can choose based on the track the student is registered in is as follows;

Computational Science and Engineering Track

Domain Courses:
- **Mechanical:** MEEN 655, MEEN 716, MEEN 719, MEEN 822, MEEN 846, MEEN 847, MEEN 849
- **Civil:** CIEN 600, CIEN 614, CIEN 668, CIEN 644, CIEN 660, CIEN 662, CIEN 664, CIEN 700, CIEN 702, CIEN 736, CIEN 737, CIEN 754
- **Industrial:** INEN 615, INEN 624, INEN 665, INEN 721, INEN 742, INEN 745, INEN 813, INEN 814, INEN 822, INEN 841, INEN 843, INEN 844, INEN 853
- **Computer Science:** COMP 653, COMP 662, COMP 670, COMP 732, COMP 733, COMP 747, COMP 753, COMP 755, COMP 770, COMP 785
Electrical: ELEN 656, ELEN 674, ELEN 678, ELEN 749, ELEN 762, ELEN 764, ELEN 821, ELEN 857, ELEN 862, ELEN 865, ELEN 867, ELEN 870, ELEN 871
Chemical: CHEN 630, CHEN 620, CHEN 640, CHEN 710, CHEN 720, CHEN 730, CHEN 740, CHEN 760
Physics: PHYS 605, PHYS 630, PHYS 744, PHYS 745
Mathematics: MATH 608, MATH 624, MATH 631, MATH 652, MATH 706, MATH 708, MATH 712, MATH 721, MATH 723, MATH 731, MATH 781, MATH 782

Interdisciplinary Elective Courses:
PHYS 745, PHYS 746, BIOL 705, BIOL 706, MEEN 655, MEEN 716, PHYS 791, MATH 791, CSE 711, CSE 712, CSE 713 or any other qualifying domain courses that are not from the major domain area of the student. Students registered for the thesis option must complete 6 credit hours of course work from this list and students registered for the project option must complete 9 credit hours of course work from this list.

Computational Science Track
Domain Courses:
Chemistry: CHEM 674, CHEM 731, CHEM 732, CHEM 741, CHEM 742, CHEM 743, CHEM 749, CHEM 735, CHEM 755
Agribusiness and Science: AGEC 638, AGEC 675, AGEC 705, AGEC 708, AGEC 710, AGEC 720, AGEC 740, AGEC 756
Animal Sciences: ANSC 637, ANSC 665, ANSC 771, ANSC 782
Human Environment and Family Sciences: HEFS 653
Natural Resources and Environmental Design: SLSC 632, NARS 610, AGRI 604
Biology: BIOL 630, BIOL 640, BIOL 642, BIOL 665, BIOL 700, BIOL 703, BIOL 704
Business and Economics: BUAD 715, BUAD 713, ECON 706, ACCT 708, ACCT 714, BUAD 730, BUAD 731, BUAD 732, BUAD 733, BUAD 734, BUAD 735, BUAD 736, TRAN 701, TRAN 720, TRAN 725, TRAN 727, TRAN 730

Interdisciplinary Elective Courses:
PHYS 745, PHYS 746, BIOL 705, BIOL 706, MEEN 655, MEEN 716, PHYS 791, MATH 791, CSE 711, CSE 712, CSE 713 or any other qualifying domain courses that are not from the major domain area of the student. Students registered for the thesis option must complete 6 credit hours of course work from this list and students registered for the project option must complete 9 credit hours of course work from this list.

Computational Technology
Domain Courses:
Construction Management and Occupational Safety and Health: MSIT 610, MSIT 779,
Electronics and Computer Technology and Manufacturing Systems: ECT 600, ECT 634, ECT 635, ITT 650, ITT 629, ITT 630, ITT 665, ITT 670, ITT 680, CUIN 760, CUIN 761,
Graphics Communication Systems: GCS 631, GCS 632,
Manufacturing Systems: MFG 651, MFG 674, MFG 696, MFG 760
Interdisciplinary Elective Courses:
PHYS 745, PHYS 746, BIOL 705, BIOL 706, MEEN 655, MEEN 716, PHYS 791, MATH 791, CSE 711, CSE 712, CSE 713 or any other qualifying domain courses that are not from the major domain area of the student. Students registered for the thesis option must complete 6 credit hours of course work from this list and students registered for the project option must complete 9 credit hours of course work from this list.

ADVISORY COMMITTEE AND PLAN OF GRADUATE WORK

Initially the Director of the program will serve as the academic advisor for all new students entering the program. Each student in the M.S. program is expected to select a major advisor by the beginning of the second semester with the approval of the Director. The major advisor must hold a tenure or tenure-track full-time faculty position at the university. However, a co-advisor may have non-tenure-track/adjunct status. The M.S. Advisory Committee will consist of a minimum of three (3) graduate faculty members with the major advisor as its chairperson. Committee members must be from at least two different departments. Members could represent more than one campus School/College. The M.S. Advisory Committee will be recommended by the major advisor with input from the student to the Director of the CSE program for approval by the Dean of Graduate Studies.

OTHER INFORMATION
See “Requirements for the Master of Science Degree” elsewhere in this catalog for information related to residence requirements, qualifying examination, preliminary examination, final oral examination, admission to candidacy, and time limit. Additional details of requirements for the program are outlined in the Computational Science and Engineering M.S. Program Student Handbook available from the Graduate School.
List of Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 701 Applied Probability and Statistics</td>
<td>3</td>
</tr>
<tr>
<td>CSE 702 Comprehensive Numerical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CSE 703 Data Structures, Software Principles and Programming in Scalable Parallel Computing</td>
<td>3</td>
</tr>
<tr>
<td>CSE 704 Computational Modeling and Visualization</td>
<td>3</td>
</tr>
<tr>
<td>CSE 711 Nano-Scale Science and Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSE 712 Nano-Scale Technology</td>
<td>3</td>
</tr>
<tr>
<td>CSE 713 Multi-Scale and Multi-Physics Modeling</td>
<td>3</td>
</tr>
<tr>
<td>CSE 785 Special Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

M.S. Level Pass/Fail Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 792 Graduate Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CSE 793 Master’s Supervised Teaching</td>
<td>3</td>
</tr>
<tr>
<td>CSE 794 Master’s Supervised Research</td>
<td>3</td>
</tr>
<tr>
<td>CSE 796 Masters Project</td>
<td>3</td>
</tr>
<tr>
<td>CSE 797 Masters Thesis</td>
<td>3</td>
</tr>
<tr>
<td>CSE 799 Continuation of Masters Thesis</td>
<td>1</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS

CSE 701. Applied Probability and Statistics
Credit 3(3-0)
This course addresses probability and statistics theory and techniques with common application in computational science and engineering. Topics include parameter and distribution estimation, random variables and computer generation, hypothesis testing and confidence intervals, regression analysis, and the design of experiments including analysis of variance.

CSE 702. Comprehensive Numerical Analysis
Credit 3(3-0)
This course provides a comprehensive treatment to numerical methods for the solution of equation systems both in deterministic and non-deterministic problems. Both numerical solution techniques for differential equations, linear systems, data analysis, optimization, regression, Monte Carlo methods, forecast models, etc. will be covered.

CSE 703. Data Structures, Software Principles and Programming in Scalable Parallel Computing
Credit 3(3-0)
This course addresses the concepts, principles hardware and software, communication and computational strategies for scalable, parallel computing systems, the associated computer data structures, programming languages and parallel programming paradigms and associated communications for parallel and scalable computing applications in engineering, sciences, and technology.

CSE 704. Computational Modeling and Visualization
Credit 3(3-0)
This course covers computational techniques for solving deterministic physical models in engineering and sciences, as well as computational techniques for non-deterministic models in business, economics, informatics, statistics, etc. It also involves a detailed study of visualization, analysis and interpretation techniques useful in the analysis of numerical data in both deterministic and non-deterministic disciplines, as well as visualization and interpretation software tools.

CSE 711. Nano-Scale Science and Engineering
Credit 3(3-0)
This course explores the fundamental understanding and resulting technological advances arising from the exploitation of new physical, chemical, and biological properties of systems that are intermediate in size between isolated atoms and molecules and bulk materials.

CSE 712. Nano-Scale Technology
Credit 3(3-0)
This course explores the creation and utilization of functional materials, devices, and systems with novel properties and functions that are achieved through the control of matter, atom-by-atom, molecule-by-molecule, or at the macro-molecular level. Nano-scale manufacturing and fabrication requires an entirely new approach: invention of new instruments, measuring tools, models, methods, and standards to characterize nano-scale materials and processes.
CSE 713. Multi-Scale and Multi-Physics Modeling Credit 3(3-0)
This course focuses on multi-scale, multi-physics modeling approaches, associated computational techniques involving quantum, atomistic, meso, micro, macro models and the coupling of such models and related applications in engineering, materials and physical sciences.

CSE 785. Special Topics Credit 3(3-0)
This course is designed to allow the introduction of potential new courses on a trial basis or special content courses on a once only basis at the Master’s level. The topic of the course and title are determined prior to registration. Prerequisite: Consent of Instructor.

CSE 792. Graduate Seminar Credit 1(1-0)
Discussions and reports of subjects in Computational Science and Engineering and allied fields will be presented. Prerequisite: Masters level standing.

CSE 793. Master’s Supervised Teaching Credit 3(3-0)
Students will gain teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of assignment. Prerequisite: Master’s level standing.

CSE 794. Master’s Supervised Research Credits 3(3-0)
This course is supervised research under the mentorship of a faculty member. It is not intended to serve as the project nor thesis topic of the master’s student. Prerequisite: Consent of instructor.

CSE 796. Masters Project Credit 3(3-0)
The student will conduct advanced research of interest to the student and the instructor. A written proposal, which outlines the nature of the project, must be submitted for approval. This course is only available to project option students. Prerequisite: Masters level standing.

CSE 797. Masters Thesis Credit 3(3-0)
Master of Science thesis research will be conducted under the supervision of the thesis committee chairperson leading to the completion of the Masters thesis. This course is available only to thesis option students and can be repeated. Prerequisite: Consent of advisor.

CSE 799. Continuation of Masters Thesis Credit 1(1-0)
This course is a continuation of CSE 797. The course is for master’s students who have completed all required credit hour requirements. Prerequisite: Completion of all Thesis/Dissertation Credits.
OBJECTIVES

The Master of Science Program in Computer Science is designed to meet the need for technical and managerial specialists in research, academia and industry.

DEGREE OFFERED

Computer Science - Master of Science

The MSCS program provides three methods for earning the degree: Thesis (30 credits), Project (33 credits) or course only (33 credits). Unconditional admission to the program is granted to students with a BS in computer science from an accredited program with a minimum GPA of 3.0. Admission may be awarded to promising students from other majors after completing specified undergraduate prerequisites. Specific degree and admission requirements are detailed in the Computer Science Department Graduate Student Handbook.

It is assumed that all entering students have completed undergraduate courses in programming in an object-oriented language (such as C++, Java or Smalltalk), in data structures, algorithm analysis, operating systems and computer architecture. It is also assumed that they are mathematically mature (for example, calculus, discrete math or switching theory). Students who have not had such courses or their equivalent may be required to take undergraduate courses to remedy deficiencies, with no credit towards the degree.

Master's Program General Description

The research interests of the faculty cover many areas of Computer Science including software engineering, information assurance, artificial intelligence, computational science, distributed systems, multiagent systems, computer security, visualization, multimedia input and high performance computing.

Software Engineering:

The systematic approach to the development, operation, maintenance, and retirement of software is the definition of software engineering. Software is not only the program code, but includes the various documents needed for the development, installation, utilization, and maintenance of a system. Engineering refers to the application of a systems approach to the production of large software systems. Methodologies for analysis and design are evolving, competing, and themselves being automated through the use of CASE (computer aided software engineering) tools. The methods of software engineering seek to produce systems of high quality, on time, at the lowest costs possible. Research projects include object oriented methodologies, software production cost modeling, software reliability engineering, and the social implications of computer technology.

Information Assurance:

With wide spread use of the Internet, Information Assurance has become a dominant issue in the Information Technology (IT) industry. Information Assurance has significantly influenced priorities for IT education, research, and development. To defend our homeland and stay at the forefront of scientific discovery, federal and local governments recognize the need for a well-trained workforce in emerging and advanced tools of information security. The rapid growth of Information Assurance in the job market created a need for well-trained workers at all levels, including the master’s. Research topics include network security, Web security, wireless security, intrusion detection, information privacy and security, and software development security.

Computational Science and Engineering:

Computational science is a relatively new branch of science and has emerged as a powerful and indispensable method of analyzing a variety of problems in research, production and process development, and manufacturing. Computational modeling and simulation is being accepted as a third methodology in scientific research, complementing the traditional approaches of theory and experiment. Computational modeling, simulation, and visualization are immensely useful for studying things that are otherwise too big, too small, too expensive, too scarce, or too inaccessible to study. The rapid growth of information technology and its applications in the job market created a need for multi-skilled workers at all levels, including the master’s.
Artificial Intelligence:

Artificial intelligence uses symbolic computation and complex interrelations of variables to produce “intelligent” responses to problem situations. The responses are intelligent in the sense that unforeseen situations are accommodated and decisions are not hard-coded into programs. Problems are frequently “ill-structured”, that is, they cannot be stated in the forms required by commonly used deterministic and sequential algorithms. Artificial intelligence often involves search and inference and frequently supports human decision making. It is thus natural to view artificial intelligence software as tackling problems as humans would tackle them. Research topics include mobile robots, computer vision, automated reasoning, the acquisition and representation of knowledge, and the analysis of decision making in realistic business settings. Artificial intelligence uses a multitude of paradigms, willingly collaborates with other areas of computer science, and pursues real-world applications.

General:

There are several other research areas in the Department of Computer Science. Students can select a research topic from these areas as the project/thesis. Students must consult their advisor to design their curriculum and project/thesis.

The Computer Science Department operates the Software Engineering Laboratory, National Science Foundation and National Security Agency scholarship study laboratory, the NASA Intelligent Agents study group, the visualization research group, as well as other research funded by agencies including the Naval Oceanographic Office.

LIST OF GRADUATE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 611</td>
<td>System Testing and Evaluation</td>
</tr>
<tr>
<td>COMP 620</td>
<td>Information, Privacy, and Security %</td>
</tr>
<tr>
<td>COMP 621</td>
<td>Web Security %</td>
</tr>
<tr>
<td>COMP 627</td>
<td>Wireless Network Security</td>
</tr>
<tr>
<td>COMP 645</td>
<td>Artificial Intelligence **</td>
</tr>
<tr>
<td>COMP 653</td>
<td>Computer Graphics</td>
</tr>
<tr>
<td>COMP 662</td>
<td>Computer Aided Instruction</td>
</tr>
<tr>
<td>COMP 663</td>
<td>Compiler Construction</td>
</tr>
<tr>
<td>COMP 670</td>
<td>Advanced Computer Architecture</td>
</tr>
<tr>
<td>COMP 681</td>
<td>Formal Methods #</td>
</tr>
<tr>
<td>COMP 700</td>
<td>Independent Study</td>
</tr>
<tr>
<td>COMP 710</td>
<td>Software Specification, Analysis and Design ***, #</td>
</tr>
<tr>
<td>COMP 711</td>
<td>Software System Design, Implementation, Verification and Validation ***, #</td>
</tr>
<tr>
<td>COMP 712</td>
<td>Software Project Management **</td>
</tr>
<tr>
<td>COMP 713</td>
<td>Social Impacts of Software Systems</td>
</tr>
<tr>
<td>COMP 714</td>
<td>Case, Automated Development, and Information Engineering</td>
</tr>
<tr>
<td>COMP 715</td>
<td>Decision Support Systems</td>
</tr>
<tr>
<td>COMP 716</td>
<td>Object-Oriented Programming and Software Reuse</td>
</tr>
<tr>
<td>COMP 717</td>
<td>Software Fault Tolerance</td>
</tr>
<tr>
<td>COMP 718</td>
<td>Object Oriented Software Engineering</td>
</tr>
<tr>
<td>COMP 722</td>
<td>E-Commerce</td>
</tr>
<tr>
<td>COMP 723</td>
<td>Intrusion Detection</td>
</tr>
<tr>
<td>COMP 732</td>
<td>Advanced Software Tools †</td>
</tr>
<tr>
<td>COMP 733</td>
<td>Parallel Computing Applications</td>
</tr>
<tr>
<td>COMP 740</td>
<td>Advanced Artificial Intelligence **</td>
</tr>
<tr>
<td>COMP 741</td>
<td>Knowledge Representation and Acquisition</td>
</tr>
<tr>
<td>COMP 742</td>
<td>Automated Reasoning</td>
</tr>
<tr>
<td>COMP 745</td>
<td>Computational Linguistics</td>
</tr>
<tr>
<td>COMP 747</td>
<td>Computer Vision Methodologies</td>
</tr>
<tr>
<td>COMP 749</td>
<td>Intelligent Robots</td>
</tr>
<tr>
<td>COMP 750</td>
<td>Distributed Systems</td>
</tr>
<tr>
<td>COMP 753</td>
<td>Performance Modeling and Evaluation</td>
</tr>
<tr>
<td>COMP 755</td>
<td>Advanced Operating Systems *</td>
</tr>
<tr>
<td>COMP 767</td>
<td>Computer Network Architecture</td>
</tr>
<tr>
<td>COMP 770</td>
<td>Computer Organization and Programming for Scientific Computing †</td>
</tr>
<tr>
<td>COMP 780</td>
<td>Semantics of Programming Languages</td>
</tr>
<tr>
<td>COMP 785</td>
<td>Advanced Design and Analysis of Algorithms *</td>
</tr>
<tr>
<td>COMP 786</td>
<td>Multiagent Systems</td>
</tr>
</tbody>
</table>
COMP 790 Special Topics in Computer Science
COMP 793 Masters Supervised Teaching
COMP 796 Masters Project
COMP 797 Masters Thesis
COMP 999 Continuation Research

* = Core course, required of all students
** = Required for Artificial Intelligence specialization
*** = Required for Software Engineering specialization
%=Required for Information Assurance
† = Required for Computational Science and Engineering specialization
= Required for General specialization

COURSES WITH DESCRIPTION IN COMPUTER SCIENCE

Advanced Undergraduate and Graduate

COMP-611. System Testing and Evaluation Credit 3 (3-0)
This course will focus on the methods, techniques, procedures for system testing and evaluation. The main topics include reliability measurement, testing small and large systems, black box software testing, white box software testing, testing of concurrent and real-time systems, client-server testing, test case design methods, and automated testing tools.

COMP-620. Information, Privacy and Security Credit 3 (3-0)
This course examines the security and privacy issues associated with information systems. There are cost/risk tradeoffs to be made. Discussed are topics such as technical, physical, and administrative methods of providing security, access control, identification, and authentication. Encryption is examined, including Data Encryption Standards (DES) and public key cryptosystems. Management considerations such as key protection and distribution, orange book requirements, and OSI data security standards are covered. Privacy legislation is covered, as is current cryptographic research.

COMP-621. Web Security Credit 3 (3-0)
This course focuses on the technologies that provide security services for the World Wide Web. It introduces a set of procedures, practices, and technologies for protecting web servers, web users, and their surrounding organizations. We discuss, understand and use various security technologies for the World Wide Web (WWW). How to use these technologies to secure WWW applications will be addressed.

COMP-627. Wireless Network Security Credit 3 (3-0)
This course covers the security issues associated with wireless networks. Emerging wireless technologies, standards and protocols are explored. The course will define and demonstrate various threats to wireless security. Topics include security service, security protocol, and security architecture for wireless. Details of wireless encryption techniques are examined.

COMP-645. Artificial Intelligence Credit 3 (3-0)
This course presents the theory of artificial intelligence, and application of the principles of artificial intelligence to problems that cannot be solved, or cannot be solved efficiently, by standard algorithmic techniques. Knowledge representation, and Knowledge-based systems. Topics include search strategies, production systems, heuristic search, expert systems, inference rules, computational logic, natural language processing. Predicate calculus is discussed. An artificial intelligence language is presented as a vehicle for implementing concepts of artificial intelligence.

COMP-653. Computer Graphics Credit 3 (3-0)
This is a course in fundamental principles and methods in the design, use, and understanding of computer graphic systems. Topics include coordinate representations, graphics functions, and software standards. Hardware and software components of computer graphics are discussed. The course presents graphics algorithms. It also introduces basic two-dimensional transformations, reflection, shear, windowing concepts, clipping algorithms, window-to-viewport transformations, segment concept, files, attributes and multiple workstation, and interactive picture-construction techniques.

COMP-662. Computer Aided Instruction Credit 3 (3-0)
This course provides a conceptual foundation for the development of instructional tools based on a variety of learning theories. Students will learn how to design and implement Computer Aided Instruction (CAI) projects using authoring software. As part of the implementation process, a multimedia programming language will be studied and practiced. The concept of Intelligent Computer Aided Instruction (ICAI) will be introduced.

COMP-663. Compiler Construction Credit 3 (3-0)
This course emphasizes the theoretical and practical aspects of constructing compilers for computer programming languages. The course covers principles, models, and techniques used in the design and implementation of compilers, interpreters, and assemblers. Topics include lexical analysis, parsing arithmetic expressions and simple statements, syntax specification, algorithms for syntax analysis, object code generation, and code optimization. Each student will develop and implement a compiler.

COMP-670. Advanced Computer Architecture Credit 3 (3-0)
This is a course that examines the control and storage structures that facilitate the execution and management of logically segmented programs and data. Of special focus are input-output mechanisms, performance tuning, and microprogramming.

COMP-681. Formal Methods Credit 3 (3-0)
In this course formal methods that model the software development process will be studied. Fundamental and practical methodologies and theories, including set theory and the foundations of software engineering will be emphasized. Applications to formal specifications, object-oriented programming and data modeling will be examined. Topics include: set theory, relations and functions, induction and recursion, symbolic logic, complex models, and application case studies.

GRADUATE STUDENTS ONLY

COMP-700. Independent Study Credit 3 (3-0)
This course can be used for study of advanced topics in computer science pertinent to the student’s interest under supervision of a faculty member. Prerequisite: Permission of Instructor

COMP-710. Software Specification, Analysis and Design Credit 3 (3-0)
This course examines the formalization of software requirements and the analysis of the flow of data through a proposed large software system. Methodologies covered include Structured Analysis (data flow diagramming), hierarchy charts, entity-relationship data diagrams, procedure specifications, and Information Engineering. Additional methodologies addressed include Jackson Structured Diagrams, Harlan Black Boxes, and Object-Oriented Analysis techniques.

COMP-711. Software System Design, Implementation, Verification and Validation Credit 3(3-0)
This course proceeds from the evaluation of a completed system design for completeness, correctness, information engineering, and functionality. Accepted industry and academic standards for such reviews will be used, for example leveling of data flow diagrams, measures of module cohesion, control structures, and function point estimation. As part of the implementation process, verification and validation methodologies will be studied and practiced. An actual system will be implemented by the end of the semester. Prerequisite: COMP-710.

COMP-712. Software Project Management Credit 3 (3-0)
This course examines the nature of data processing projects, definitions of purpose, scope, objectives, deliverable dates, and quality standards. Interpersonal interaction and people-oriented management techniques are studied, along with team member measurement and assessment methods. Project management tools such as PERT (Project Evaluation and Review Technique), and CPM (Critical Path Method) are covered. Managerial styles in motivating, innovating, and organizing will be examined, along with techniques for improving these skills. Equipment and software selection and installation guidelines, and the proper use of outside consulting services will be examined.

COMP-713. Social Impacts of Software Systems Credit 3 (3-0)
This course examines the increasing importance of computer technology in the functionality of our economy, our government, and our industry. Potential impacts upon personal privacy and autonomy are examined in relation to the public policy and social impacts of computer technology. The role and opportunity for historically under-represented technical professionals will be explored. Interdisciplinary readings, written and oral presentations, and in class debates are required. Outside speakers from related disciplines are invited to participate.

COMP-714. CASE, Automated Development and Information Engineering Credit 3 (3-0)
Beginning with the concepts of automated development, various models are reviewed in detail, especially Information Engineering. Methodology assessment approaches are covered, especially the Software Engineering Institute Process Maturity model, and a variety of organizational impacts of technology are examined. Computer Aided Software Engineering (CASE) is covered through tutorial laboratory sessions and a problem assignment. Topics include fundamentals of data analysis, diagramming tools for data modeling process analysis, presentation architecture, communications architecture, data architecture, process architecture, and application construction. Techniques and tools for defining menu structures, screens and screen dialogues, and user interface management systems are studied, as are the general principles of physical design.
COMP-715. Decision Support Systems Credit 3 (3-0)
This course examines methods of inference under uncertainty and problem-solving strategies as key components of decision support systems. Knowledge based systems, knowledge acquisition and representation, and the planning, design and implementation of computer-assisted decision systems are covered. The interactive use of software for management decision making is examined through examples drawn from decision modeling, simulations, and large-scale commercial applications.

COMP-716. Object-Oriented Programming and Software Reuse Credit 3 (3-0)
Introduce software reuse principles and reuse driven software development. Reuse techniques will be addressed that include reuse readiness assessment, corporate reuse plan creation and organizing for reuse. Discuss application package selection, selecting reusable components and identifying candidate reusable components. Teach and use the object-oriented programming language Java, emphasize its object-oriented features and how to use Java to develop reusable components, subsystems and frameworks.

COMP-717. Software Fault Tolerance Credit 3 (3-0)
The principles, techniques and current practices in the area of fault tolerant computing with an emphasis on system structure and dependability are examined in this course. Major topics include system models, software/hardware interaction, failure and reliability, fault tolerance principles, redundancy, rollback and recovery strategies, and N-version programming. Redundancy in data structures and the validation of fault tolerant software are studied.

COMP-718. Object Oriented Software Engineering Credit 3 (3-0)
This course covers the concept of the “object-oriented life cycle”, demonstrating a practical methodology for the application of object oriented methods to large projects. The specific problems and solutions for large software systems are discussed. Object Oriented Requirements Analysis (OORA), Object-Oriented Requirements Specification (OORS), Object Oriented Analysis (OOA), Object Oriented Design (OOD), and Object Oriented Domain Analysis (OODA) are covered. Existing and upcoming object oriented Computer Aided Software Engineering (CASE) tools are examined and object oriented database design issues are discussed with analysis of specific systems currently in practice or under development.

COMP 722 E-Commerce Credit 3 (3-0)
This course covers the computer science and technology that enable e-commerce and the business concepts needed to understand e-commerce. Topics reviewed include HTML and CSS as well as client-side scripting. Topics introduced include e-commerce features, business models, and marketing concepts. Topics emphasized include the HTTP protocol, server-side scripting, the XML family of specifications, web services, the Semantic Web, and security in an e-commerce context.

COMP-723. Intrusion Detection Credit 3 (3-0)
This course introduces the concepts, techniques, tools, and the state of the art in the area of network intrusion detection systems. Topics to be covered include: network and computer system security fundamentals, network security models and approaches, attack classification and analysis, intrusions detection techniques and tools (vulnerability scanners, network sniffer, system monitoring and logging, etc), firewall, as well as the tools and techniques for intrusion signature analysis, such as TCPdump and Snort, etc. The course will be a seminar-like, research-oriented class. Students are required to actively participate in the class presentations and discussions. Besides the textbooks, we will read and discuss many recent technical papers from current research in intrusion detection.

COMP-732. Advanced Software Tools Credit 3 (3-0)
The software tools utilized in the high performance and massively parallel computing environments are indispensable to the practicing computer scientist. Message passing, profiling, languages, compilers, porting, system library usage, cache optimization, and in-lining are the topics of this course.

COMP-733. Parallel Computing Applications Credit 3 (3-0)
Many problems in computing can be solved more efficiently on a parallel computer. The parallel computing paradigm is the main focus of this course. The applicability of Amdahl’s law, PRAM models, matrix by vector transforms, matrix by matrix graphics and visualization computations will be discussed.

COMP-740. Advanced Artificial Intelligence Credit 3 (3-0)
This course is a further study of artificial intelligence principles, with a focus on knowledge based systems. The course examines planning, belief revision, control, and system evaluation and implementation. Advanced topics include automated theorem proving, learning and robotics, neural nets, and the adequacy of existing theoretical treatments.
COMP-741. Knowledge Representation and Acquisition Credit 3 (3-0)
The representation formalisms used in artificial intelligence are explained, along with representation selection and implementation in common Artificial Intelligence languages and shells. Formalisms include first order logic and its extensions, semantic nets, frames and scripts, and KL-ONE-like languages. Knowledge acquisition is introduced as eliciting knowledge, interpreting elicited data within a conceptual framework, and the formalizing of conceptualizations prior to software implementation. Knowledge acquisition techniques such as protocol analysis, repertory grids, and laddering are examined.

COMP-742. Automated Reasoning Credit 3 (3-0)
This course studies the computational aspects of logic via propositional and predicate calculi, as well as the theory underlying their automation through logic programming languages. Various forms of resolution and their soundness and completeness are examined along with unification and its properties. Proof procedures and their search characteristics, term rewriting, and techniques such as narrowing are researched as a means of theory resolution. The relationship of formal specification techniques such as cut elimination, efficiency, and implementation issues are addressed. Prerequisite: COMP-645.

COMP-745. Computational Linguistics Credit 3 (3-0)
A presentation of computational linguistics theory and practice. Advanced readings that emphasize theories of dialogue and research methodologies are examined. Technical writing for journals and conferences is stressed as a goal of research output. Prerequisite: COMP-645.

COMP-747. Computer Vision Methodologies Credit 3 (3-0)
This course researches techniques for image understanding, both low-level and high-level image processing, mathematical morphology, neighborhood operators, labeling and segmentation. Vision methods covered include perspective transformation, motion, the consistent-labeling problem, matching, object models, and knowledge-based vision. Prerequisite: COMP-653.

COMP-749. Intelligent Robots Credit 3 (3-0)
This course examines intelligent robot systems as inclusive of knowledge representations, path finders, inference systems of rules and logic, and image understanding and spatial reasoning systems. Problems of navigation, algorithm development, robot programming languages and multiple robot co-operation are explored.

COMP-750. Distributed Systems Credit 3 (3-0)
This course examines the operating system concepts necessary for the design and effective use of networked computer systems. Such concepts include communication models and standards, remote procedure calls, name resolution, distributed file systems, security, mutual exclusion, and distributed databases. Students are required to construct an advanced implementation of distributed operating system facilities or a simulation of same.
COMP-753. Performance Modeling and Evaluation
Credit 3 (3-0)
Common techniques and current results in the performance evaluation of computer systems are studied in this course. Background material in probability theory, queuing theory, simulation, and discrete mathematics is reviewed so that a performance evaluation of resource management algorithms for operating systems and database management systems in parallel and distributed environments may be developed. Prerequisite: COMP-755.

COMP-755. Advanced Operating Systems
Credit 3 (3-0)
This course centers on operating systems for multi-processing environments: concurrent processes, mutual exclusion, job scheduling, memory, storage hierarchy, file systems, security, and distributed processing. Also discussed are virtual resource management strategies. A design project involving the construction of operating facilities is produced.

COMP-767. Computer Network Architecture
Credit 3 (3-0)
This is a course in the architecture of computer communication networks and the hardware and software required to implement the protocols that define the architecture. Basic communication theory, transmission technology, private and common carrier facilities, international standards, satellite communications, and local area networks are examined. Methods of performance analysis and communication network modeling are discussed.

Credit 3 (3-0)
Computer programming in the High Performance Computing environment is unlike that of the common workstation or desktop computing platform. Programming parallel computers with regard to data transfer (MPI), data storage and process execution are the main focus of this course. The architecture and organization of various parallel computing platforms are examined.

COMP-780. Semantics of Programming Languages
Credit 3 (3-0)
This course examines the formal treatment of the specification, meaning, and correctness of programs. Required mathematical results are examined, in areas such as universal algebra and category theory. Major course topics include the lambda calculus, type systems for programming languages, polymorphism, algebraic specification, rewrite systems, and semantic domains. The denotational semantics of programming languages, program logics, and program verification are discussed.

COMP-785. Advanced Design and Analysis of Algorithms
Credit 3 (3-0)
This course discusses the design and analysis of efficient algorithms and algorithmic paradigms. Applications include sorting, searching dynamic structures, graph algorithms, computationally hard problems, and NP completeness.

COMP-786. Multiagent Systems
Credit 3 (3-0)
This course primarily addresses multiagent systems, emphasizing collaboration and group attributes. Topics include planning for multiagent tasks and distributed planning, distributed problem solving, agent communication languages (including speech acts), negotiation, ontologies and knowledge sharing, distributed rational decision making (involving techniques from economics), societal theories (from philosophy), and computational organization theory. Formalisms (including modal logics, process algebras, Petri nets, and Statecharts) are presented and applied to the specification and modeling of multiagent systems.

COMP-790. Special Topics in Computer Science
Credit 3 (3-0)
This course permits research in advanced topics pertinent to the student’s program of study. Prerequisite: Permission of advisor.

COMP-793. Masters Supervised Teaching
Credit 3 (3-0)
Students will gain teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment.

COMP-796. Masters Project
Credit 3 (3-0)
The student will conduct advanced research of interest to the student and the instructor. A written proposal, which outlines the nature of the project and the deliverables, must be submitted for approval. This course is only available to project option students. Prerequisite: Permission of advisor.
COMP-797. Masters Thesis
Credit 3 (3-0)
Master of science thesis research will be conducted under the supervision of the thesis committee chairperson leading to the completion of the master's thesis. This course is only available to thesis option students. Prerequisite: Permission of advisor.

COMP-999. Continuation Research
Credit 1 (1-0)
Continue incomplete thesis or project work.

Graduate Faculty

Department: Computer Science
Chair: Dr. Gerry Dozier
Sharon A. Brown, B.S., M.S., North Carolina A&T State University; M.S., University of Illinois; Adjunct Associate Professor and Director of Undergraduate Studies
Gina Bullock, B.S Computer Science, Shaw University; M.S. Computer Science, North Carolina A&T State University
Edward C. Carr, B.S., Wingate University; M.S., North Carolina A&T State University; M.S., Western Carolina University; Adjunct Assistant Professor
Gerry Dozier, B.S. Northeastern Illinois University; M.S. North Carolina State University; Ph.D. North Carolina State University; Professor and chairperson
Edmundson Effort, B.S. NC A&T State University; M.S., NC A&T State University; Adjunct Assistant Professor & System Administrator in College of Engineering
Albert C. Esterline, B.A., Lawrence University; M.Litt., Ph.D, University of St. Andrews; M.S., Ph.D., University of Minnesota; Associate Professor
Jung Hee Kim, B.S., Korea University; M.S., Ph.D., Illinois Institute of Technology; Associate Professor
Yaohang Li, B.S. South China University of Technology; M.S. Florida State University; Ph.D. Florida State University; Assistant Professor
Kenneth A. Williams, B.S., M.S., Michigan Technological University; Ph.D., University of Minnesota; Associate Professor
Jinhong Xu, B.S., Nanjing University; M.S., Beijing University; Ph.D., Michigan State University; Assistant Professor
Xiaohong Yuan, B.S., Hua Zhong University of Science and Technology; Ph.D., Institute of Automation, Chinese Academy of Sciences; Ph.D., Florida Atlantic University; Associate Professor
Huiming (Anna) Yu, B.S., Xiamen University; M.S., Hefei Polytechnic University; Ph.D., Stevens Institute of Technology; Professor and Director of Graduate Studies
OBJECTIVES
The Department of Construction Management and Occupational Safety and Health (CM&OSH) prepares graduates to work in the fields of construction and safety and health. Most courses are structured with lecture and laboratory components which encourages both theoretical and practical applications. Graduates receive, depending upon the degree option, instruction in: estimating, project management, scheduling and planning, industrial hygiene, accident recognition, fundamentals of fire protection and many other related topics. Further, courses in business application, accounting and statistics are a part of the curriculum.

DEGREES OFFERED
Construction Management – Master of Science in Construction Management
Occupational Safety and Health – Master of Science in Occupational Safety and Health
Environmental and Occupational Safety and Health – Master of Science in Environmental and Occupational Safety & Health

PROGRAM DESCRIPTION
The School of Technology at North Carolina Agricultural and Technical State University offers a Master of Science in Industrial Technology (MSIT) degree. The program is designed with several options, three of which are in the Department of Construction Management and Occupational Safety and Health. These three aforementioned options are: Construction Management; Occupational Safety and Health and Environmental and Occupational Safety and Health.

These programs are designed to increase a student’s understanding of industrial management challenges in an array of technical areas and to explore effective methods for dealing with technological evolutions and change.

ADMISSION REQUIREMENTS
The Master of Science in Industrial Technology, within the School of Technology, does not require the GRE General Test as part of the admission process as of the Fall 2007 semester. Please contact the Graduate School Office for more information.

DEPARTMENT REQUIREMENTS
MSIT/Construction Management

A total of 42 hours is required for a Master of Science in Industrial Technology with a concentration in Construction Management. The total consists of 12 semester hours of MSIT Core Courses, 6 semester hours of Management Courses and 24 semester hours of Technical Electives.

PROGRAM CURRICULA

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIT 610</td>
<td>Problem Solving in Industrial Technology</td>
</tr>
<tr>
<td>MSIT 779</td>
<td>Statistical & Research Methods in Industrial Technology I</td>
</tr>
<tr>
<td>MSIT 700</td>
<td>Concepts of Technological Innovations</td>
</tr>
<tr>
<td>MSIT 740</td>
<td>Leadership Development Seminar</td>
</tr>
</tbody>
</table>

MANAGEMENT COURSES

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 692</td>
<td>Project Management</td>
</tr>
<tr>
<td>CM 710</td>
<td>Advanced Construction Management and Organization</td>
</tr>
<tr>
<td>CM 720</td>
<td>Construction Contract Administration</td>
</tr>
</tbody>
</table>

TECHNICAL COURSES
CM 603 Environmental Issues in Construction Technology
CM 617 Independent Study I
CM 618 Independent Study II
CM 650 Construction Contracts and Law
CM 675 Advanced Construction Planning and Scheduling
CM 678 Real Estate and Land Development
CM 685 Experiential Graduate Internship
CM 686 Special Problems in Construction Management
CM 690 Special Problems in Construction Management
CM 715 Productivity and Methods Improvement in Construction
CM 720 Construction Contract Administration
CM 750 Research Methods in Construction
CM 780 Emerging Trends in CM of International Projects

REQUIRED COURSE

CM 788 Master Comprehensive Exam

DEPARTMENT REQUIREMENTS

MSIT/Occupational Safety and Health

A total of 42 hours is required for a Master of Science in Industrial Technology with a concentration in Occupational Safety and Health. The total consists of 12 semester hours of MSIT Core Courses, 6 semester hours of Management Courses and 24 semester hours of Technical Courses. The MSIT Core Courses are the same courses as those listed for all MSIT concentrations.

MANAGEMENT COURSES

OSH 614 Industrial Relations
OSH 708 Occupational Safety and Health Management
OSH 709 Current Issues in Occupational Health and Safety
OSH 710 Legal Issues in Occupational Health & Safety Practice

TECHNICAL COURSES

OSH 600 Occupational Toxicology I
OSH 613 Industrial Hygiene Ventilation
OSH 630 Industrial Safety
OSH 632 Design of Engineering Hazard Controls
OSH 637 Machine and welding Safety
OSH 642 Electrical Safety
OSH 672 Systems Safety and Other Analytical Methods
OSH 678 Experiential Education I
OSH 679 Experiential Education II
OSH 700 Special Problems in Occupational Health and Safety
OSH 704 Occupational Epidemiology
OSH 706 Noise Control
OSH 712 Education and Training Methods for Safety
OSH 731 Toxicology for the Industrial Hygienist
OSH 751 Industrial Ventilation
DEPARTMENT REQUIREMENTS
MSIT/Environmental and Occupational Safety and Health

The Environmental and Occupational Safety and Health Degree Program is an interdisciplinary concentration which is designed to prepare individuals with a background in environmental safety and health. Graduates will become associated with the scientific, managerial, and supervisory activities in industry, as well as other business sectors. Individuals will develop both technical skills as well as environmental safety and health management skills for industry applications and entrepreneurship.

The EOSH concentration (42 credit hours—all coursework) is comprised of a broad range of topics including: environmental health, environmental science, environmental education, solid waste management, highway operations safety, epidemiology, air pollution, electronics and computer technology, and environmental toxicology.

This program requires the same CORE courses as those of the Construction Management and Occupational Safety and Health programs; however, the remaining portion of the program is as follows:

MANAGEMENT ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGED 601</td>
<td>Environmental Education</td>
</tr>
<tr>
<td>BIO 700 (or)</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>ECT 634</td>
<td>Electronic Instrumentation for Remove Sensing Applications</td>
</tr>
</tbody>
</table>

TECHNICAL ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSC 624</td>
<td>Environmental Toxicology</td>
</tr>
<tr>
<td>CIEN 616</td>
<td>Solid Waste Management</td>
</tr>
<tr>
<td>CIEN 618</td>
<td>Air Pollution Control</td>
</tr>
<tr>
<td>CIEN 710</td>
<td>Hazardous Waste Management</td>
</tr>
<tr>
<td>CIEN 756</td>
<td>Highway Operations Safety</td>
</tr>
<tr>
<td>OSH 706</td>
<td>Noise Control</td>
</tr>
<tr>
<td>OSH 704</td>
<td>Occupational Epidemiology</td>
</tr>
<tr>
<td>OSH 710</td>
<td>Legal Issues in Occupational Safety & Health</td>
</tr>
</tbody>
</table>

The CM, OSH and EOSH programs requires a minimum of 42 semester hours. All programs require a student to pass a written comprehensive examination. In addition, at least fifty percent (50%) of the courses counted toward the Master of Science degree must be numbered 700 and above, and students must maintain and complete the program with an overall GPA of 3.0 or better on a scale of 4.0. Up to six semester hours of graduate work may be transferred from another university, provided it is not a part of any prior undergraduate degree program. Transfer credit must be at a level comparable to 600 or 700 level courses at North Carolina Agricultural and Technical State University. The GRE exam is not required as of Fall 2007. Further, students without sufficient undergraduate preparation may be required to take additional undergraduate course work.

COURSE DESCRIPTIONS IN CONSTRUCTION MANAGEMENT AND OCCUPATIONAL SAFETY AND HEALTH

(Undergraduate/Graduate)

Construction Management

CM 600. Senior Seminar

Credit 3(3-0)

This seminar will address how to develop a comprehensive proposal for an actual construction project.

CM 601. Environmental Technology for Construction

Credit 3(3-0)

A special project related to the construction industry is developed and implemented during the semester. Prerequisite: CM 600
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM 603.</td>
<td>Environmental Technology for Construction</td>
<td>3</td>
<td>Senior standing</td>
</tr>
<tr>
<td>CM 617.</td>
<td>Independent Studies I</td>
<td>3</td>
<td>Consent of Instructor Required</td>
</tr>
<tr>
<td>CM 618.</td>
<td>Independent Studies II</td>
<td>3</td>
<td>Consent of Instructor Required</td>
</tr>
<tr>
<td>CM 650.</td>
<td>Construction Contracts and Law</td>
<td>3</td>
<td>CM 594 or equivalent</td>
</tr>
<tr>
<td>CM 675.</td>
<td>Advanced Construction Planning and Scheduling</td>
<td>3</td>
<td>CM 594 or equivalent</td>
</tr>
<tr>
<td>CM 678.</td>
<td>Real Estate and Land Development</td>
<td>3</td>
<td>CM 216 or equivalent</td>
</tr>
<tr>
<td>CM 685.</td>
<td>Graduate Internship I</td>
<td>3</td>
<td>Consent of Graduate Advisor</td>
</tr>
<tr>
<td>CM 686.</td>
<td>Graduate Internship II</td>
<td>3</td>
<td>Consent of Graduate Advisor</td>
</tr>
<tr>
<td>CM 690.</td>
<td>Special Problems in Construction Management</td>
<td>3</td>
<td>Consent of Instructor and Construction Industry Partner</td>
</tr>
<tr>
<td>CM 692.</td>
<td>Project Management</td>
<td>3</td>
<td>Graduate standing or permission of instructor</td>
</tr>
</tbody>
</table>
CM 710. Advanced Construction Practices and Organization Credit 3 (3-0)
Advanced construction practices are developed at the project level. Construction company organization, project preplanning, value engineering concepts, cost control and application of construction control techniques to construction project development are studied as they relate to construction. Prerequisite: CM 598; Graduate standing.

CM 715. Productivity and Methods Improvement in Construction Credit 3 (3-0)
Methods and techniques of analyzing construction work to improve productivity are studied. Total quality management, worker motivation, productivity ratings, crew balancing and work measurement are discussed and developed as models for change in the construction management process. Prerequisites: CM 710; Graduate Standing.

CM 720. Construction Contract Administration Credit 3 (3-0)
This course will focus on contracts for design and construction of structures. Legal aspects, labor-management relationships, estimating and bidding strategies are incorporated into a study of administrative procedures. Computer applications in contract administration are reviewed. Pre-requisite: Graduate standing.

CM 750. Research Methods in Construction Credit 3 (3-0)
Fundamentals of construction research methods, techniques, research design, data collection and analysis with relevant computer applications are incorporated into the course. Pre-requisite: ECON 305 and Graduate Standing.

CM 780. Emerging Trends in Construction Management of International Projects Credit 3 (3-0)
Project delivery systems, remote sensing, three-dimensional documentation, site logistics, construction materials and methods development, international law, cultural and demographic differences are applied to the construction process. Study will emphasize the international aspect of the industry. Pre-Requisite: Graduate Standing.

CM 781. Risk Management in Construction Credit 3(3-0)
This course provides an indepth study of various risks associated with construction projects and how those risks impact the construction industry. Topics of discussion will include analytical and management techniques used to identify, analyse and respond to risks. Students will review actual legal case studies and develop written opinion papers.

CM 788. Master Comprehensive Exam Credit 0(0-0)
This course is the comprehensive exam for MSIT/CM students.

CM 999. Continuation of Thesis for Construction Management Credit 1(0-1)
This class is for graduate student who have completed all required course works and all thesis credits. The course allows students to maintain full-time enrollment following completion of the thesis.

LAND 679. Regulatory Issues in Real Estate and Land Development Credit 3(3-0)
This course deals with an indepth discussion of various regulatory issues affecting real estate and land development practices. Topics of discussion will include a review of real estate and land development laws, estates in land, permitting process, land use planning, and development controls.

LAND 682. Sustainable Development and Construction Credit 3(3-0)
This course deals with the principles and practices of sustainable development and construction. Historical development of sustainability and its application to building and construction practices will be studied. The role of Leadership in Energy and Environmental Design (LEED) organization and its Green Building Rating System will be thoroughly discussed as well.

LAND 683. Planning and Development of Energy-Efficient Affordable Housing Credit 3(3-0)
This course deals with the principles and practices of energy-efficient affordable housing development and construction. Students will review and analyse public policy and regulatory issues affecting affordable housing. Also, the role of public agencies in promoting affordable housing will be covered.

LAND 700. Special Topics in Land Development Credit 3(3-0)
This course deals with the study of special topics and emerging trends in land development. Individual students will select a specific topic from current literature and conduct an indepth study of the issues under the guidance of a graduate faculty.
LAND 701. Directed Studies in Real Estate and Land Development
Credit 3 (3-0)
Students will pursue an individual area of interest under the guidance of a graduate faculty. Each student will conclude the study with a culminating research report.

LAND 702. Special Problems in Economic and Community Development
Credit 3 (3-0)
Special problems related to economic and community development will be identified. Students will select a topic of interest and conduct a comprehensive study of the problem under the guidance of a graduate faculty member.

LAND 703. Mixed-Use Development
Credit 3 (3-0)
This course deals with planning and development of mixed use projects. Topics of discussion will include place making, feasibility studies, financing, planning and design issues, marketing and management. Applicable regulatory issues will be studied as well.

Occupational Safety and Health

OSH 600. Occupational Toxicology I
Credit 3 (3-0)
This course is a basic survey of the principles of toxicology. Emphasis will be placed on the effects of common industrial toxicants; absorption, distribution, secretion and bio-transformation of toxicants; and toxicological assay methods. Mechanisms of action, testing, risk assessment, carcinogenesis, oncogenes, receptors, toxicological evaluation, and host/environmental interactions will be discussed.

OSH 613. Industrial Hygiene Ventilation
Credit 3 (3-0)
This course course is an introduction to the design of local exhaust ventilation systems for the control of airborne contaminants. An emphasis will be placed on the velocity pressure method of predicting system performance, and minimization of total installation and operational costs. Pre-requisites OSH 416.

OSH 614. Industrial Relations
Credit 3 (3-0)
This course is an overview of legislations and methods pertinent to the practice of occupational safety and health in the human resource environment. Emphasis is placed on total quality management, anti-discrimination legislation, wage and hour law, workers’ compensation, training for safety, behavioral aspects of safety, and the process of health and safety inspections of the Occupational Safety and Health Administration.

OSH 617. Independent Study I
Credit 3 (3-0)
Students will study a special OSH topic of interest to the student and an OSH faculty member who will supervise the study.

OSH 630. Industrial Safety MCNC
Credit 3 (3-0)
This course is an in-depth OSHA certification.

OSH 632. Design of Engineering Hazard Controls
Credit 3(2-2)
This course is an overview of the design and assessment of engineering controls for the abatement of health and safety hazards in the work-place. An emphasis is placed on cost benefit analysis, and technical and financial feasibility. Topics of discussion include industrial noise abatement, industrial ventilation, machine guarding, and walking and working surfaces. Prerequisite: OSH 416.

OSH 637. Machine and Welding Safety
Credit 3 (3-0)
This course covers the general safety practices and precautions that all welders and safety professionals should follow during welding procedures. Topics such as health factors, ventilation, hot-work management, safe practices and personal protective equipment are covered. Further, hazards related to welding such as: electrical shock, arc radiation, air contamination, fire and explosion and compressed gasses are studied. Pre-requisites OSH 32 and PHYS 226.
OSH 642. Electrical Safety
Credit 3 (3-0)
This course is an overview of the identification and control of the fire and electrocution hazards of electrical wiring and equipment. An emphasis is placed on the National Electric Code and electrical standards of the Occupational Safety and Health Administration found in the Code of Federal Regulations. Pre-requisites OSH 312 and PHYS 226.

OSH 672. System Safety and Other Analytical Methods
Credit 3 (3-0)
This course is an overview of system theory and process safety management. An emphasis is placed on regulatory compliance with the process safety management standard of the Occupational Safety and Health Administration. Topics of discussion include fault tree analysis, failure modes, and risk analysis and management. Pre-requisites: MATH 224 and OSH 411.

OSH 678. Experiential Education I
Credit 3 (3-0)
To satisfy the requirements of this course, students must engage in cooperative activities within industry, governmental agencies, or in consulting firms. Work responsibilities must include significant hazard assessment activities. Conditions of experience are supervised by departmental faculty.

OSH 679. Experiential Education II
Credit 3 (3-0)
To satisfy the requirements of this course, students must engage in intern activities within industry, governmental agencies, or in consulting firms. Work responsibilities must include significant hazard assessment activities. Conditions of experience are supervised by departmental faculty.

OSH 700. Special Problems in Occupational Safety & Health
Credit 3 (3-0)
This course provides an opportunity to study special areas in the discipline. Course content will be determined by the Department and the instructor with a complete syllabus each time the course is offered.

OSH 704. Occupational Epidemiology
Credit 3 (3-0)
The main focus of this course is on the fundamentals of occupational epidemiology, epidemiological methods used in both chronic and infectious occupational disease epidemiology, application of methods to safety and health research and practice will be stressed. Epidemiologic topics will also be related to subjects in occupational safety and health management.

OSH 706. Noise Control
Credit 3 (3-0)
This course will cover the following topics: properties of sound, occupation damage-risk criteria, noise surveys and measuring equipment, noise control programs, and engineering controls.

OSH 708. Occupational Safety & Health Management I
Credit 3 (3-0)
This course is an overview of management tools, such as goal setting, planning, organizing, etc. to the OSH program so as to enhance the safety and health of employees in the workplace and compliance with the applicable local, state and national standards. An emphasis is placed on the development, implementation and evaluation of written OSH programs.

OSH 709. Occupational Safety & Health Management II
Credit 3 (3-0)
A study of the principles of the development and management of materials, techniques, and procedures used in the implementation of occupational safety and health programs and their application in a variety of occupational settings. Examined will be the management techniques, governmental relations, and safety and health programs developed for industry. The course will focus on the history of the safety and health movement; government regulations; safety and health program organization; hazard information and analysis process; and implementation of an occupational safety and health program.

OSH 710. Legal Issues in OSH Practice
Credit 3 (3-0)
This course is designed to review and analyze occupational safety and health and environmental regulations. Significant court cases and litigation procedures will be presented to show the student how regulatory compliance and interpretations evolve.

OSH 712. Education and Training Methods of Safety
Credit 3 (3-0)
Lectures with emphasis on education/training for the control or prevention of occupational injuries or illnesses. Education/training methods, materials and available courses are stressed. The student is expected to determine the need for education training, design a program for a specific control effort and establish criteria for evaluation of the program.

OSH 731. Toxicology for the Industrial Hygienist
Credit 3(3-0)
This course is a basic survey of the principles of toxicology. Emphasis will be placed on the effects of common industrial
toxicants; absorption, distribution, secretion, and biotransformation of toxicants; and toxicological essay methods. Prerequisite: OSH 416 or approval of instructor.

OSH 751. Industrial Ventilation
Credit 3(2-2)
This course is an introduction to the design of local exhaust ventilation systems for the control of airborne contaminants. An emphasis will be placed on the velocity pressure method of predicting system performance, and minimization of total installation and operational costs. Prerequisite: OSH 416 or approval of instructor.

OSH 788 Master Comprehensive Exam
Credit 0(0-0)
This course is the comprehensive exam for MSIT/OSH students.

Graduate Faculty

Department: Construction Management and Occupational Safety and Health

Chair: Dr. David A. Dillon

Horlin Carter, Sr., Associate Professor, B.A., Physical Education; Marshall University; M.S. Health & Physical Education, Occupational Safety & Health; Marshall University; Ph.D., Highway Traffic Safety Curriculum, Educational Administration; Michigan State University

Chung-Suk Cho, Assistant Professor, B.S., Civil Engineering, Sung Kyun Kwan University, Korea; M.S. Construction Management, University of Hawaii at Manoa; Ph.D., Construction Engineering and Project Management, the University of Texas at Austin

David A. Dillon, Professor and Chairperson, A.A.S., Electronics Engineering Technology, Durham Technical Community College; B.S., Industrial Arts Technology, Northwestern State University; B.S., Industrial Arts Education, Northwestern State University; M.A., Industrial Arts Education, University of Northern Colorado; Ed.D., Occupational Education/Special Education, North Carolina State University

Robert B. Pyle, Ph.D., Professor, B.A., Industrial Arts (Industrial Technology Concentration), Trenton State College; M.A., Industrial Education, (Construction Concentration), Trenton State College; Ph.D., Administration of Vocational-Technical Education, University of Pittsburgh

Dilip T. Shah, Associate Professor, B.E., Mechanical Engineering, College of Engineering, University of Poona, India; M.S. Industrial Technology (Industrial Safety Concentration), Illinois State University; Ph.D., Industrial Engineering (Industrial Hygiene and Safety-Specialty), Texas A & M University

Musibau A. Shofoluwe, Professor, B.S. Industrial Technology/Construction, North Carolina A&T State University; M.S., Technology Construction Management, Pittsburgh State University; Doctor of Industrial Technology (DIT), Construction Management Specialization, University of Northern Iowa

Syrulwa Somah, Associate Professor, A.A. in Liberal Studies, Fiorello La Guardia Community College, City University of New York; B.S., Occupational Safety & Health, State University of New York; M.S. Liberal Studies, Liberal College, University of Oklahoma; M.S. Healthcare Administration, School of Public Administration, Central Michigan University; Ph.D., Policy Studies in Environmental and Occupation Health, the Union Institute & University
OBJECTIVES

The Department of Curriculum and Instruction provides the professional studies component for the preparation of effective teachers and school personnel at the bachelor’s degree and master’s degree levels. The department cooperates with the various academic departments of the University for teacher education preparation. The department offers graduate degrees in the areas of elementary education and instructional technology. In addition, Licensure only is available in elementary education and special education.

PROFESSIONAL STUDIES COMPONENT

The professional studies component of the Teacher Education Program is designed to provide for the development of those competencies essential to the professional role of a teacher or special service personnel. At the graduate level, approximately 20 to 40 percent of the graduate program is comprised of professional studies. Candidates for the degree in teacher education must complete a minimum of 15 semester hours in professional studies.

ACCREDITATION

All Teacher Education Programs are accredited by the National Council for Accreditation of Teacher Education (NCATE) and approved by the North Carolina Department of Public Instruction.

CAREER OPPORTUNITIES

In addition to preparing teachers for elementary education (K-6) and special education, a degree or licensure in these fields also provides for career opportunities in other areas related to the education of children and youth.

The instructional technology program has three program concentration areas that prepare students for different career paths. Students who do not hold a teaching license can prepare for careers in Instructional Technology, in Business and Industry settings. Individuals who currently hold a North Carolina “A” teaching license may pursue coursework that prepares them for licensure as school media coordinators (076 licensure), and instructional technologists-computers (077 licensure).

DEGREES OFFERED

MAT in Elementary Education
MAT in Special Education
MS in Instructional Technology
M.A.Ed. in Elementary Education
M.A.Ed. in Reading

GENERAL PROGRAM REQUIREMENTS

Degree seeking students must follow the general admission requirements for graduate studies and meet other requirements as stated in “Admission and Other Information”.

THE ELEMENTARY EDUCATION GRADUATE PROGRAM

The Elementary Education Graduate Program provides advanced studies in the field of elementary education commensurate with INTASC, NCATE, SDPI, and National Board Certification Standards. The program provides experiences in research, technology, methodology, diversity, and learning theory. The program also requires a product of learning which includes a final comprehensive examination, a basic portfolio, and either a research project or a comprehensive portfolio that meets the requirements for submission for National Board Certification.

Admission Criteria
Criteria for admission are GRE or MAT scores, and an undergraduate GPA of 2.5 or better, “Class A” Certification in the area of study, three letters of recommendation. It is the responsibility of the candidate to meet these requirements as well as any other requirements of the School of Graduate Studies.

Course Requirements
The Curriculum Guide outlines the sequence of required courses and the benchmarks. A copy of this guide will be kept in the student’s folder in the advisor’s office to be updated at each advising conference. The candidate prior to registration must arrange advising conferences for the next semester. Before a candidate can register for classes in Phase 2 of the Elementary Education Graduate Program, all the requirements of Phase I must have been met. Before a candidate can register for classes in Phase II of the Elementary Education Graduate Program, all the requirements of Phase III must have been met prior to graduation. The Elementary Education Graduate Program requires a 3.0 GPA for graduation.

M.A.Ed. in Elementary Education

Phase I

Requirements (15 hours)

CUIN 711 – Research and Inquiry (3)
CUIN 619 – Learning Theory (3)
CUIN 728 – Technology (3)
CUIN 729 – Diversity Issues in K-12 Schools (3)
CUIN 721 – Advanced Methods (3)
ELED 788 – Comprehensive Examination (Core) (0)

Documentation of Approvals

(1) Planning contact
(2) Core Comprehensive Examination Passed
(3) 3.0 GPA
(4) Submission of TPAI from current academic year to Program Coordinator

Phase II: Content and Pedagogy (Complete before beginning Phase 3)

Requirements (24 credit hours)

ELED 750 – Tch/Lrn Multicultural (3)
ELED 751 – Adv. Communications (3)
ELED 752 – Adv. Science (3)
ELED 753 – Adv. Social Studies (3)
ELED 754 – Adv. Mathematics (3)
ELED 755 – Ed. Leadership (3)
ELED 756 – Assessment/Evaluation (3)
ELED 720 – Curriculum Development (3)
ELED 788 – Comprehensive Exam (Specialty Area) (0)

Phase III: Capstone Experience

Requirements (1 hour)

CUIN 999- Capstone Experience (1)
Completion and submission of the NBPTS. Take One Project and Acceptable or above grade on National Board-like Portfolio

Documentation of Approvals
Acceptable or above GRADE on National Board (like) Portfolio or Passing National Boards

MASTERS IN THE ART OF TEACHING ELEMENTARY EDUCATION

The Master of Arts in Teaching Degree program is designed for college graduates who have decided to enter the teaching profession, may of who will already be lateral entry teachers, teachers changing fields, and prospective candidates who are taking coursework before entering the classroom. The Master of Arts in Teaching will enable prospective teachers, who bring content knowledge to the graduate degree, the opportunity to develop the knowledge skills, and dispositions to become excellent teachers.

For further information regarding the MAT Degree Programs, contact your prospective licensure content areas.

Admission to Program
Requirements: Entrance requirements include a minimum 2.5 GPA in undergraduate coursework or passing PRAXIS 1 score and completion of perquisite competencies. Bachelor degree from Accredited College/University

Prerequisites: (6 or more hours as needed) Complete before the end of Phase I

SPED 661 Psychology of the Exceptional Child
CUIN 611 or 617 Computers in Education or Technology Competency

Phase I: Initial Licensure Requirements 24 hours

COURSES
ELED 601: Theory and Techniques of Planning and Instruction
ELED 602: Language Arts through Children’s Literature
ELED 603: Elementary Curriculum: Social Studies/Science/Health
ELED 604: Mathematics Curriculum and Assessment
ELED 605: Reading in the Elementary Classroom
ELED 607: Teaching Through Multiple Intelligences
ELED 608: Clinical Application of Instruction

*** ELED 608-Requires a ten (10) week/fully day internship assigned in an elementary classroom setting.***

BENCHMARK: CUIN 404 PRAXIS Review, Minimum 3.0 GPA, Pass PRAXIS II and be licensed. Candidates must take the GRE and pass an application approval process to advance further in the MAT Phase II.

Phase II: (15 hours) Advanced Studies (MAT coursework) Completion of end of Phase I

CUIN 711: Research and Inquiry
CUIN 729: Diversity Issues in K-12 Schools

Advanced Elementary Education Coursework

ELED 729: School, Community and Family Collaboration
ELED 714: Standards and Accountability
CUIN 728: Technology in K-12 Schools
ELED 789: Product in Learning
ELED 788: Comprehensive Examination

Documentation of Approvals: (1) Comprehensive Examination passed; and (2) Master's Comprehensive Portfolio
MASTER OF ARTS IN TEACHING IN SPECIAL EDUCATION

Admission to Program

Requirement: Entrance requirements include a minimum 2.5 GPA in undergraduate coursework or passing PRAXIS I scores and completion of prerequisite competencies. Bachelor degree from a Regional Accredited College/University

Prerequisites: (9 or more hours as needed)
- SPED 661 Psychology of the Exceptional Child
- CUIN 611 or 617 Computers in Education or Technology Competency
- CUIN 619 Learning Theories or any other content specific coursework as needed for academic competency

Phase I: General Curriculum Competencies (Initial Licensure Requirements 24 hours)

COURSES
- ELED 605 – Reading in the Elementary Classroom (3)
- ELED 604 – Math Curriculum and Assessment (3)
- ELED 607 – Teaching through Multiple Intelligences (3)
- SPED 667 – Specific Learning Disabilities (3) Internship Required
- SPED 760 – Teaching Students with Learning and Behavior Problem (3)
- SPED 748 – Diagnostic Assessment and IEP Development (3)
- SPED 763 – Classroom and Behavior Management in Special Education (3)
- SPED 764 – Methods and Curriculum Programming for Children and Youth with Mild/Moderate Disabilities (3) Internship required

BENCHMARK: Minimum 3.0 GPA, Pass PRAXIS II and be licensed. Candidates must take the GRE and pass an application approval process to advance further in the MAT Phase II.

Phase II: (15 hours) Advanced Studies MAT coursework)

CUIN 711 – Research and Inquiry (3) Prerequisite: complete of Phase I
CUIN 729 – Diversity Issues in K-12 Schools (3) Prerequisite: completion of Phase I

Advanced Learning Disabilities Coursework

CUIN 771 – Advance Methods and Internship in Learning Disabilities (3) Prerequisite SPED 760
SPED 765 – Collaboration and Consultation in Education (3)
READ 731 – Assessment and Intervention of the Literacy Needs of Struggling Readers (3) prerequisite
SPED 764 and ELED 605
SPED 789 - Comprehensive Action Research Project or Portfolio Capstone (0)
SPED 788 – Comprehensive Examination (0)

At conclusion, student must take an oral and written comprehensive examination and complete a Master’s Comprehensive Portfolio (similar to content for National Boards) or complete the Master’s Action Research Project.

INSTRUCTIONAL TECHNOLOGY

The Master of Science degree program in Instructional Technology at North Carolina A&T State University is housed in the School of Education’s Department of Curriculum and Instruction. This program helps students in both business and education to acquire skills and knowledge to work with instructional design and delivery at any level. A variety of course work is offered to address different professional goals and needs within the field of Instructional Technology. All instructional technology program concentrations require a minimum
of a 3.0 GPA for graduation.

Specifically, the course work includes not only the use of a variety of media but the science and art of instructional planning, and the delivery of instruction in a variety of settings. Students will gain both theoretical and practical knowledge in the field of Instructional Technology. There are four Program Concentrations: business and industry and three add-on licensure areas.

Accreditation: All programs involving licensure are accredited by the National Council for Accreditation of Teacher Education (NCATE) and the North Carolina Department of Public Instruction. See student resources.

On-line Program

North Carolina A&T State University offers the Business and Industry track of the Instructional Technology Master’s program via the World Wide Web. Please consult the Center for Distance Learning Website (www.distance.ncat.edu) for further information.

Instructional Technology Specialization-Media Coordinator (076)

Core Requirements to be completed before Content and Pedagogy Courses (18 hours)

- CUIN 711: Research and Inquiry
- CUIN 619: Learning Theories
- INST 700: Instructional Design
- CUIN 728: Integrating Technology across the Curriculum
- CUIN 729: Diversity
- CUIN 721: Advanced Methods

Benchmark # 1: Core Comprehensive Documentation

Required Content and Pedagogy (21 hours)

- INST 680: Cataloging and Media Materials
- INST 613: Developmental Media for Children (or)
- INST 614: Book Selection and Related Materials for Young People
- INST 720: Visual Media
- INST 721: Multimedia Development and Evaluation (or)
- INST 722: Advanced Internet Uses in Education
- INST 741: Media Center Management
- INST 790: Internship in Instructional Technology
- INST 791: Thesis/ Special Project

Research and Development (See Benchmark # 3)

Benchmark # 2: Satisfactory completion of required content and pedagogy, PRAXIS, 3.0 GPA, Portfolio Completed required content & pedagogy and 3.0 G.P.A.

Benchmark # 3-Capstone

Thesis or Special Project

Instructional Technology Specialist –Computer Program Concentration (077)

Core Requirements to be completed before Content and Pedagogy Courses (18 hours)

- CUIN 711: Research and Inquiry
- CUIN 619: Learning Theories
- INST 700: Instructional Design
- CUIN 728: Integrating Technology across the Curriculum
- CUIN 729: Diversity
- CUIN 721: Advanced Methods and Internship

Benchmark #1: Core Comprehensive Documentation

Required Content and Pedagogy (21 hours)

- INST 725: Technology Facilitation in the Schools
- INST 755: Programming in BASIC or
- INST 756: Programming in LOGO or
- INST 757: Authoring Software
- INST 722: Advanced Internet Uses in Education
- INST 721: Multimedia Development and Evaluation
- INST 768: Computer Lab Supervision and Management
INST 790: Internship in Instructional Technology
INST 791: Thesis/Special Project
Research and Development (See Benchmark #3)

Benchmark #2: Satisfactory completion of required content and pedagogy, PRAXIS, 3.0 GPA, Portfolio
Completed required content & pedagogy and 3.0 G.P.A.

Elective Courses (3 hours)
Benchmark #3: Capstone - Thesis or Special Project

Business and Industry Program Concentration

Core Requirements to be completed before Content and Pedagogy Courses (18 hours)
CUIN 711: Research and Inquiry
CUIN 619: Learning Theories
INST 700: Instructional Design
INST 701: Foundations of Instructional Technology
INST 705: Instructional Technology Services for Business and Industry
INST 709: Theory and Methods for the Education and Training of Adult Learners or
ADED 708: Methods in Adult Education

Benchmark #1: Core Comprehensive Documentation

Required Content and Pedagogy (15 hours)
INST 722: Advanced Internet Uses in Education
INST 721: Multimedia Development and Evaluation
TECH 670: Introduction to Workplace Training and Development
INST 790: Internship in Instructional Technology
INST 791: Thesis/ Special Project
Research and Development (See Benchmark #3)

Benchmark #2: Satisfactory completion of required content and pedagogy, 3.0 GPA, Portfolio
Completed required content & pedagogy and 3.0 G.P.A.

Elective Courses (9 hours)
(You may take approved courses from ADED, TECH or GCT).
Benchmark #2: Portfolio
Benchmark #3: Capstone: Thesis or Special Project

CURRICULUM AND INSTRUCTION
Advanced Undergraduate and Graduate

Six-Hundred (600) level courses are considered upper level undergraduate and lower level graduate courses. These courses in the department are designed for post-baccalaureate students pursuing licensure.

Students admitted to a graduate program will not be allowed to take more than six hours of 600 level courses without the approval of his/her advisor.

CUIN-619. Learning Theories Credit 3 (3-0)
This course examines behavioral, cognitive, and constructivist learning theory families and how they impact instructional methods and technology. The course will include writing instructional units based upon a variety of theoretical approaches. (F, S, S)

CUIN-620. Foundations in Reading Credit 3 (3-0)
Basic reading course which considers the broad field of reading - its goal and nature; factors affecting its growth; sequential development of skills, attitudes and interests; types of reading approaches; organization and materials in teaching the fundamentals of reading. (F, S, S)

CUIN-621. Word Recognition/Identification Skills Credit 3 (3-0)
This course explores phonic (letter-sound correspondence), syntactic (grammar), semantic
(meaning), morphemic (structure) and visual word identification techniques for word recognition in developmental, corrective and remedial reading programs. Methods of teaching and materials for introducing and reinforcing the skills are included. (F, S, S)

CUIN-622. Teaching Reading through the Primary Years Credit 3 (3-0)
Methods, materials, and techniques used in reading instructions of pre-school through grade three. An examination of learning, the teaching of reading, and curriculum experiences and procedures for developing reading skills. (F, S, S)

CUIN-623. Methods and Materials in Teaching Reading in the Elementary School Credit 3 (3-0)
The application of principles of learning and child development to the teaching of reading and the related language arts. Methods and approaches to the teaching of reading in the elementary school; including phonics, developmental measures, informal testing procedures, and the construction and utilization of instructional materials. (F, S, S)

CUIN-624. Teaching Reading in the Secondary School Credit 3 (3-0)
Nature of a developmental reading program, initiating and organizing a high school reading program, the reading curriculum, including reading in the content subjects, critical reading, procedures and techniques, and corrective and remedial aspects. (F, S, S)

CUIN-625. Theory of American Public Education Credit 3 (3-0)
An examination of the philosophical resources, objectives, historical influences, social organization, administration, support, and control of public education in the United States. (F, S, S)

CUIN-627. The Afro-American Experience in American Education Credit 3 (3-0)
Lectures, discussions, and research on the Afro-American in American education, including the struggle for literacy, contributions of Afro-Americans to theory, philosophy, and practice of education in the public schools, private and higher education traces the development of school desegregation, its problems and plans. (F, S, S)

CUIN-628. Seminar and Practicum in Urban Education Credit 3 (1-4)
A synthesis of practical experiences, ideas and issues pertinent to more effective teaching in urban areas. (F, S, S)

CUIN-629. Classroom Diagnosis in Reading Instruction Credit 3 (3-0)
Methods, techniques and materials used in the diagnosis of reading problems in the kindergarten-primary area through to intermediate level. Attention is placed upon the pupil and the interpretation of physiological, psychological, sociological, and educational factors affecting learning to read. Opportunity is provided for identification, analysis, interpretation of, and strategies for fulfilling the reading needs of all pupils. (F, S, S)

CUIN-630. Reading Practicum Credit 3 (3-0)
Application of methods, materials and professional practices relevant to teaching pupils. Provisions for participation in and teaching of reading. Designed to coordinate the student’s background in reading, diagnosis, learning and materials. Supervised student teaching. Prerequisite: 12 credit hours in reading. (F, S, S)

CUIN-631. Reading for the Atypical Learner Credit 3 (3-0)
Attention to the gifted child, the able retarded, the slow learner, the disadvantaged, and the linguistically different child. Special interest groups will be formed for investigation reports. (F, S, S)

CUIN-632. Basic Technology Literacy for K-12 Educators Credit 3 (3-0)
This course provides instruction in basic computer literacy skills and classroom integration for K-12 educators. The instruction is designed to meet the North Carolina Department of Public Instruction’s requirements for basic level computer competencies for public school teachers. Topics include: word processing, spreadsheet usage, database design and management, teacher utilities, and fundamentals of modern computing. (F, S, S)

CUIN-681. Issues in Education Credit 3 (3-0)
A critical review of the background and functions of the school as a social institution. (F, S, S)

Graduate Students Only

CUIN-700. Introduction to Graduate Study Credit 2 (2-0)
Methods of research, interpretation of printed research data, and use of bibliographical tools. (F, S, S)

CUIN-701. Philosophy of Education Credit 3 (3-0)
A critical study of and a philosophic approach to educational problems. The nature and aims of education in a democratic society, relation of the individual to society, interests and disciplines, play and work, freedom and control, subject matter and method. (F, S, S)

CUIN-709. Administration and Supervision Credit 3 (3-0)
This comprehensive course in organization and administration of schools, grades K-12, will focus primary emphasis on the following areas: (1) formal and informal organizational structure, concepts and practices; (2) the management processes; (3) the administrative functions, with particular reference to personnel, program, and fiscal management; and (4) leadership styles and the leadership role, with special attention to planning, decision-making, and conflict-resolution. Prerequisite: Cuin-704. (F, S, S)

CUIN-710. Educational Statistics Credit 3 (3-0)
The essential vocabulary, concepts, and techniques of descriptive statistics as applied to problems in education and psychology. (F, S, S)

CUIN-711. Research and Inquiry Credit 3 (3-0)
This course is designed to teach students to be able to locate, read, understand, critique, and use the results of research to become more effective professionals and make sound educational decisions. Students will develop an understanding of the researcher’s methodologies, the procedures, and results. Students will analyze and evaluate research, judge the usefulness of the findings for educational practice, and plan research to improve educational practice. (F, S, S)

CUIN-720. Curriculum Development Credit 3 (3-0)
This course will focus on basic concepts in curriculum development in K-12 schools. Prerequisites: Completion of Phase I of the M.S. Degree in Elementary Education or permission of the instructor. (F, S, S)

CUIN-721. Advanced Methods and Internship Credit 3 (3-0)
This course will focus on using an understanding of child development, diversity issues and motivational strategies to plan interdisciplinary units of instruction and assessment. Candidates will create learning experiences and design a variety of modes of assessment and implement these plans. Internship is required. Prerequisites: Admission to the School of Graduate Studies. (F, S, S)

CUIN-722. Curriculum in the Secondary School Credit 3 (3-0)
Curriculum development, functions of the secondary school, types of curricula; emphasis on trends, issues, and innovations. (F, S, S)

CUIN-723. Principles of Teaching Credit 3 (3-0)
A study of the status of teaching as a profession in the United States; teacher obligations, responsibilities and opportunities for leadership in the classroom and community with special emphasis on principles of and procedures in teaching. (F, S, S)

CUIN-724. Problems and Trends in Teaching Science Credit 3 (3-0)
Attention to major problems of the high school teacher of science. Lesson plans, assignments, tests, etc., are constructed and administered by each student in class. Audiovisual materials, demonstration and laboratory techniques are carried out. (F, S, S)

CUIN-725. Problems and Trends in Teaching Social Sciences Credit 3 (3-0)
A survey of major problems in the broad field of social studies and consideration of improved
ways in presentation and class economy, including lesson plans, assignments, audiovisual materials, and other means of facilitating learning. (F, S, S)

CUIN-726. Reading in the Content Areas
Attention is given to reading problems and procedures and materials for improving reading in social studies, science, English, mathematics, a foreign language, home economics, and other fields. (F, S, S)

CUIN-727. Workshop in Methods of Teaching Modern Mathematics for Junior and Senior High School Teachers
Model lesson plans, use of educational media, geometric and trigonometric devices, Truth Tables, and intuitive and formal logic in the teaching of modern mathematics in the junior and senior high school. (F, S, S)

CUIN-728. Integrating Technology into the K-12 Curriculum
This course is designed to introduce teachers to the current and emerging technologies, which can be incorporated into the K-12 curriculum. Prerequisite: Pass a Computer Competency Exam or CUIIN 617. (F, S, S)

CUIN-729. Diversity Issues in K-12 Schools
This course is designed to examine issues of diversity including economic, gender, ethnic, cultural, political, physical and cognitive diversities, and how they impact classroom practices. (F, S, S)

CUIN-730. Problems in the Improvement of Reading
A study of current problems, issues, trends, and approaches in the teaching of reading including investigations of underlying principles of reading improvement; coverage of appraisal techniques, materials and procedures, innovative and corrective measures; and application of research data and literature will be carried out. Prerequisite: A previous graduate course in reading. (F, S, S)

CUIN-731. Advanced Diagnosis in Reading Instruction
The diagnosis and treatment of reading difficulties. Study and interpretation of selected tests useful in understanding and analyzing physiological, psychological, sociological and educational factors related to reading difficulties. Case studies and group diagnosis. (F, S, S)

CUIN-732. Organization and Administration of Reading Program
Administrative acts requisite to the creation and guidance of a well-balanced, school-wide reading program. The course is for all school personnel who are in a position to make administrative decisions regarding the school reading program. (F, S, S)

CUIN-733. Advanced Practicum in Reading
Actual experiences with youth and teachers in professional activities. (F, S, S)

CUIN-734. Seminar and Research in Reading
Evaluation of recent research concerning findings, approaches, innovations and organization of reading instruction. Selected topics for reports and research projects. Independent study of selected topics of experimentation. Prerequisite: 24 semester credit hours in graduate courses. (F, S, S)

CUIN-743. Foundations of Instructional Technology
This course provides an overview of the Instructional Technology field. Students will be introduced to some of the significant issues, areas, and practices in instructional technology. The history, current trends, and issues in instructional technology and their implications for education and training will be discussed during the course. This course also examines the instructional applications of microcomputers and telecommunications in classroom settings. Students will be informed of job opportunities, professional associations, and literature of the profession. (F, S, S)

CUIN-776. Independent Reading in Education II
Individual study and selected reading in consultation with an instructor. Prerequisite: 24 hours
CUIN-777. Independent Reading in Education III Credit 3 (3-0)
Individual study and selected reading in consultation with an instructor. Prerequisite: 24 hours of graduate credit. (F, S, S)

CUIN-780. Comparative Education Credit 3 (3-0)
Historical and international factors influencing the development of national systems of education and recent changes in educational programs of various countries. (F, S, S)

CUIN-782. Issues in Secondary Education Credit 3 (3-0)
An analysis of the role of the high school as an educational agency in a democracy. Attention is given to: (1) philosophical, psychological, and sociological bases for the selection of learning experiences; (2) contrasting approaches to curriculum construction; (3) teaching methods and materials; (4) evaluation procedures; and (5) school-community relationships. (F, S, S)

CUIN-783. Current Research in Elementary Education Credit 3 (3-0)
A critical analysis of the current research in elementary education and the implications of such for elementary school educative experiences. (F, S, S)

CUIN-784. Current Research in Secondary Education Credit 3 (3-0)
A critical analysis of the current research in secondary education and the implications of such for high school educative experiences. (F, S, S)

CUIN-787. Independent Readings in Education III Credit 3 (0-6)
Individual study and selected reading in consultation with an instructor. Prerequisite: 24 hours of graduate credit. (F, S, S)

CUIN-790. Seminar in Educational Problems Credit 3 (1-4)
Intensive study, investigation, or research in selected areas of education; reports and constructive criticism. Prerequisites: A minimum of 24 hours in prescribed graduate courses. (F, S, S)

CUIN-791. Thesis Research (F, S, S) Credit 3 (3-0)

CUIN-999. Thesis (F, S, S) Credit 1 (1-0)
ELED 601 Theory and Techniques of Planning and Instruction Credit 3 (3-0)
This course requires the candidate to analyze theories of instruction, methods, and materials in the elementary school curriculum; observe classroom procedures; and participate in teaching demonstrations. Emphasis is placed on the application of effective instructional theory and practice, sound decision-making and multicultural education in a field-based content. (F, S, S)

ELED 602 Language Arts through Children’s Literature Credit 3 (3-0)
This course is a study of models of teaching the English Language Arts at the elementary (K-6) level. Guided Reading, Integrated Instruction, Writers Workshop and Literature-Based Reading, Literature Circles and Writing Instruction will be featured. The writing process is emphasized. (F, S, S)

ELED 603 Elementary Curriculum: Science/Social Studies/Health Credit 3 (3-0)
This course explores the scope and sequence of the elementary curriculum areas of science, social studies, and health. Instructional strategies studied include content integration, cooperative grouping and effective questioning techniques. Hands on guided discovery teaching as well as the use of children’s literature will be the major focus. (F, S, S)

ELED 604 Math Curriculum and Assessment Credit 3 (3-0)
This course is primarily a course designed for students interested in teaching at the elementary level. Topics covered include number sense, numeration systems and their history, elementary number theory, number patterns, elementary set theory, whole numbers and their operations, fractions (rational numbers), problem solving, geometry, measurement, data and statistics, and elementary algebra topics. (F, S, S)

ELED 605 Reading in the Elementary Classroom Credit 3 (3-0)
This course provides a framework for understanding the development of language and literacy in children. It is designed to help students learn to build on what children ring to oral language, reading and writing, and to enhance developmentally appropriate language and literacy activities. Literacy learning is presented as a language-learning process that is best acquired through functional, purposeful use of print. (F, S, S)

ELED 607 Multiple Intelligences Credit 3 (3-0)
This course utilizes the Multiple Intelligences Theory posited by Howard Gardner to provide effective classroom instruction that meets the needs of a wide variety of students. This course will also aid candidates in meaningful integration of visual arts, music, drama, dance, and movement throughout the elementary curriculum by providing a basic arts and movement knowledge base, clear reasons for integration, and specific arts integration principles. (F, S, S)

ELED 608 Clinical Application of Instruction Credit 6 (6-0)
This course is an internship which emphasizes the development and use of teaching strategies, methods, skills, and assessments as they relate to the principles of teaching and learning, and the decision making process. Time will be spent on applying planning management skills to instruction discipline, behavioral concerns and decision making in instruction, the instruction of small groups and whole class. The student will use a variety of teaching strategies, methods skills, and instructional resources. (F, S, S)

ELED 714 Standards and Accountability in Elementary Education Credit 3 (3-0)
This course will focus on the design and application of appropriate learning assessment strategies that consider the pedagogical intent, state, federal and subject standard, and the diversity of the students. Teaching theory and practice will be viewed in the context of student learning assessment. (F, S, S)

ELED 729 School, Community & Family Collaboration Credit 3 (3-0)
This course is a theory and practice in joining families, communities, and schools in promoting children’s learning, development, and success in school. Strengths and needs of families in a diverse, multicultural society, teachers’ roles in concert with other disciplines in supporting families and buildings partnerships, and connection with community resources. (F, S, S)

ELED-750. Teaching and Learning in a Multicultural Classroom Credit 3 (3-0)
This course will focus on the incorporation of multicultural issues in the elementary school curriculum. Prerequisite: Completion of Phase 1 of the MS Degree Program in Elementary Education or permission of the instructor. (F, S, S)
ELED-751. Advanced Communication Skills Credit 3 (3-0)
This course will focus on approaches for teaching communications skills/language arts and children’s literature in elementary school. Prerequisites: Completion of Phase I of the M.S. Degree Program in Elementary Education or permission of the instructor. (F, S, S)

ELED-752. Advanced Science Credit 3 (3-0)
This course will focus on approaches for teaching science in elementary school. Prerequisites: Completion of Phase I of the M.S. Degree Program in Elementary Education or permission of the instructor. (F, S, S)

ELED-753. Advanced Social Studies Credit 3 (3-0)
This course will focus on approaches to the teaching of social studies in elementary school and the creation of a learning environment that will ensure that all students will learn fundamentals of social studies. Candidates will be required to conduct field research. (F, S, S)

ELED-754. Advanced Mathematics Credit 3 (3-0)
This course will focus on approaches for teaching mathematics in elementary school. Prerequisites: Completion of Phase I of the M.S. Degree Program in Elementary Education or permission of the instructor. (F, S, S)

ELED 755. Teachers as Educational Leaders Credit 3 (3-0)
This course will focus on the attributes and dispositions of leadership for teachers. Action research is required. Prerequisite: Completion of Phase I of the M.S. Degree Program in Elementary Education or permission of the instructor. (F, S, S)

ELED 756. Assessment and Evaluation Credit 3 (3-0)
This course will focus on multiple modes of assessment and evaluation in elementary school. Prerequisite: Completion of Phase I of the M.S. Degree Program in Elementary Education or permission of the instructor. (F, S, S)

ELED 788 Comprehensive Examinations
This course is for students taking the Core and Specialty Comprehensive exam.

SPECIAL EDUCATION

SPED-660. Introduction to Exceptional Children Credit 3 (3-0)
This course provides an overview of the educational needs of exceptionals, emphasis is placed on classroom techniques known to be most helpful to children having hearing losses, speech disorders, visual problems, emotional, social disabilities and intelligence deviation, including slow-learners and gifted children. An introduction to the area of special education. This course is designed for classroom teachers. (F, S, S)

SPED-661. Psychology of Exceptional Individuals Credit 3 (3-0)
This course is an analysis of psychological factors affecting identification and development of individuals with high and low incidence disabilities. (F, S, S)

SPED-662. Mental Disability Credit 3 (3-0)
This course is an overview of mental disabilities across the life span including etiologies, characteristics of various functioning levels, diagnosis, classification and placement, legal issues and current “best practices” for school and community inclusion. (F,S,S)

SPED-663. Measurement and Evaluation in Special Education Credit 3 (3-0)
This course is the selection, administration, and interpretation of individual tests; intensive study of problems in testing exceptional and extremely deviant children; consideration is given to measurement and evaluation of children who are mentally, physically, and emotionally or socially handicapped. Emphasis is upon the selection and use of group tests of intelligence and the interpretation of their results. (F, S, S)
SPED-667. Specific Learning Disabilities Credit 3 (3-0)
This course will address specific learning problems associated with reading, writing, language, cognition, perception attention, and arithmetic, social, and emotional disabilities. (F, S, S)

SPED-668. Children & Youth with Behavioral Disabilities Credit 3 (3-0)
A study of issues, definitions, classification, characteristics, causes and prevalence of children and youth with behavioral disorders. It will examine models, assessment and intervention strategies. (F, S, S)

SPED 748 Diagnostic Assessment & IEP Development Credit 3 (3-0)
This course focuses on various assessment alternatives and procedures in the identification and placement process in special education. IEP development, state required paperwork and culturally responsive interventions for students with special needs and diverse families will be emphasized. (F, S, S)

SPED 760 Teaching Students with Learning and Behavior Credit 3 (3-0)
This course provides information about general approaches to teaching and learning as a foundation for understanding specific methods and procedures for teaching students with disabilities. The focus of the course is a study of instructional approaches for the education of students with learning disabilities (LD) and emotional/behavioral disorders (EBD). The course is designed to familiarize student with the selection, evaluation, and adoption of materials and techniques for teaching special students. This course provides an instruction to individualized Educational Programming (IEP development). Information will be provided on classroom management, consultation and collaboration, and working with parents. (F.S.S.)

SPED 763 Classroom and Behavior Management Credit 3 (3-0)
This course is a survey of relevant research and techniques that are applicable for positive behavior support systems in learning situations for children and youth. This course will examine major schools of though involved in classroom management and motivation. Alternative ways to help children develop self-control and use of practical strategies and techniques for successful classroom management to maximize student learning will be explored. (F, S, S)

SPED 764 Methods and Curriculum Programming for Children and Youth with Mild/Moderate Disabilities
This course is designed to provide an array of teaching strategies and critical teaching behaviors used in lesson design and delivery for learners with mild/moderate disabilities. Culturally responsive instruction and communication with diverse families to strengthen students learning outcomes will be emphasized. (F, S, S)

SPED 765 Teaching Exceptional Strategies for Students in Inclusive Settings Credit 3 (3-0)
This course is designed for both the general and special educator working with special needs students in the inclusive classroom. Effective instructional strategies for diverse learners, consultation and collaborative problem solving techniques, and the cooperative teaching model will be explored. (F, S, S)

SPED 771 Advanced Methods and Internship (learning strategies) Credit 3 (3-0)
This course provides experiences special education teacher candidates with supervised teaching experiences in special education. It includes the advanced study of effective teaching strategies as well as the application and practice of methods, techniques and materials. Students enrolled in the course are expected to use advanced communication, collaboration, and consultation techniques to work with children, educators, families, and other human service professionals. (F, S, S)

INST 600 Utilization of Educational Media Credit 3 (2-2)
This course provides students with the philosophical and psychological basis of communications in teaching using media. The course covers methods of selecting and using educational materials effectively in teaching. Students gain skills in media equipment operation and basic media preparation. Students practice, plan and present an instructional session. (F, S, S)

INST 605 Computers in Education Credit 3 (2-2)
This course introduces the students to the various uses and functions of the computer in educational settings. The integration of the computer as a tool for the instructor and student use; and as a tutor for student use in a variety of formats is addressed. A basic introduction to the internet and the World Wide Web is provided. Students also explore different hardware and software configurations. This is not a course for introducing computer use. (F, S, S)

INST 613 Developmental Media for Children Credit 3 (3-0)
This course entails a study of children’s literature with emphasis on aids and criteria for selection of books and other materials for preschool through late childhood ages, story-telling, and an investigation of reading interest. (F, S, S)
INST 614 Books Selection and Related Materials for Young People Credit 3 (3-0)
This course covers literature, reading interests, and non-text materials for young people. (F, S, S)

INST 680 Cataloging of Media Materials Credit 3 (3-0)
This course offers a survey of various media classifications, storage and retrieval models as applied to information centers and their operation. Students are taught to catalog media by using both traditional and technological methods. (F, S, S)

INST 700 Instructional Design Credits 3 (3-0)
This course addresses the design, systematic development, implementation, modification and ultimate evaluation of instructional programs. This includes a survey of current research, objectives, outcomes, analysis of concepts, design of instructional sequences and assessment of students performance. (F, S, S)

INST 701 Foundations of Instructional Technology Credits 3 (3-0)
This course provides an overview of the Instructional Technology Field. Students are introduced to some of the significant issues, areas, and practices in Instructional Technology. The history, currently trends, and issues in Instructional Technology and their implementations of education and training are discussed during the course. This course examines the instructional applications of micro-computers and telecommunications in classroom settings. Students are made aware of job opportunities, professional associations, and literature of the profession. (F, S, S)

INST 705 Instructional Technology Services of Business and Industry Credits 3 (3-0)
This course introduces students to the impact of technology within business and industry and how learning in that environment warrants instruction and that differs from that of traditional education. Students have the opportunity to (a) investigate various learning and presentation needs of business and industry clients; and (b) to apply different delivery methods, techniques and technological applications to specific audiences in that environment. (F, S, S)

INST 709 Theory and Methods for the Education and Training for Adult Learners Credits 3 (3-0)
This course explores theories and methods that address adult learning. Areas addressed include, but are not limited to, adult motivation, andragogy, assessing adult learning, methods for helping adults learn. (F, S, S)

INST 720 Visual Media Credits 3 (3-0)
This course provides students with general visual design criteria and the application of those criteria to a variety of visual media forms. Students are exposed to various forms of visual media but special emphasis in placed on digital photography and digital video. Principles of analog video editing are explored. New forms of visuals may be included as they are developed. (F, S, S)

INST 721 Multimedia Development and Evaluation Credit 3 (2-2)
This course offers experiences in the evaluation and development of multimedia instructional presentations using computer-based multimedia capabilities. Theories and research in multimedia development are discussed. (F, S, S)

INST 722 Advanced Internet Uses in Education Credit 3(2-2)
This course explores use of the Internet for the purpose of enhancing instructional activities. Students investigate a variety of resources on the Internet, which can be use for instruction purposes. Students explore the World Wide Web and develop Web-based instruction (F, S, S)

INST 725 Technology Facilitation in the Schools Credit 3(2-2)
This course provides students with knowledge, skills, and dispositions to integrate technology into K-12 settings, develop workshops that provide in-service teachers with technology skills and the knowledge to integrate technology in appropriate ways into the curriculum, and provide input into hardware and software related decisions at the school level. (F, S, S)
INST 741 Media Center Management Credit 3(3-0)
This course provides students with the opportunity to explore different methods for organizing and operating media centers. Students are expected to create plans for media center organization and operation, including budget planning. In addition, students create plans for both student’s activities and faculty in-service as related to media center use. (F, S, S)

INST 750 Distance Education Credit 3(2-2)
This course provides students with the opportunity to learn about a variety of distance education delivery systems and methods. Different technological configurations are addressed. Students review research on the effectiveness of varied distance delivery systems. (F, S, S)

INST 751 Educational Software Design and Evaluation Credit 3(2-2)
This course provides students with the opportunity to apply instructional design techniques and learning theories to the evaluation and development of educational software. During the course students learn storyboarding and use it as a means to create computer-based software. Some limited experiences with authoring software and provided. (F, S, S)

INST 752 Designing Courses for Online Delivery Credits 3(2-2)
This course provides students with the knowledge, skills, and dispositions to create interactive online courses that incorporate instructional design principles, learning theory, appropriate use of multimedia and techniques for assessing student learning in the online environment. (F, S, S)

INST 753 Program Evaluation Credit 3(3-0)
This course provides students with basic information needed to evaluate educational programs and make recommendations for programs improvement. Students are taught the techniques for evaluation programs and creating program evaluation reports. (F, S, S)

INST 755 Programming BASIC Credit 3 (2-2)
The course provides students with the opportunity to learn program logic and structured programming for BASIC. The course includes how plan activities for elementary and mid-level students in programming language appropriate for public school use, is addressed in this course. (F, S, S)

INST 756 Programming in LOGO Credit 3 (2-2)
This course provides students with the opportunity to learn program logic and structured programming for LOGO. The course includes how to plan activities for elementary student in programming. LOGO, as a computer programming language appropriate for public school use, is addressed in this course. (F, S, S)

INST 757 Authoring Software Credit 3 (2-2)
The course provides students with the opportunity to utilize authoring software to create educational software and presentations. Students import graphics, sounds, and video into the authoring program and write appropriate script routines to implement a variety of actions within the program. Knowledge and usage of authoring software enables students to create complex multimedia presentations or complex tutorial educational software. (F, S, S)

INST 758 Emerging Technology for Authoring and Problem Solving Credit 3 (2-2)
This course provides students with the opportunity to explore programming, scripting, and other skills as appropriate with emerging or developing programming languages, authoring software, or problem solving technology. In addition, students explore uses within educational contexts and create learning units which incorporate these and other technologies. (F, S, S)

INST 760 Social Foundations of Instructional Technology Credit 3 (3-0)
This course explores philosophical, personal, and social issues underlying universal acceptance of the technological revolution. With special emphasis on technology in education and K-12 schools, this course focuses on reasons why we use technology, how it alters the culture of personal and learning situations, the epistemological foundations and worldviews that support or discourage the use of technology, and what it means to learn in a technological-rich learning environment. Participants in the course take part in an introspective dialectic that unfolds through readings, discussions, and personal experiences. (F, S, S)

INST 768 Computer Lab Supervision and Management Credit 3 (2-2)
This course provides students with an opportunity to explore different methods for supervising, managing, maintaining, organizing, and operating computer labs in schools. (F, S, S)

INST 770 Independent Study in Instructional Technology Variable Credit (1-3)
This course provides the opportunity for students to pursue individual projects(s) and topic(s) of choice with the approval of the instructor. (F, S, S)
INST 771 Special Topics in Instructional Technology Variable Credit (1-3)
This course permits the investigation and study of developing areas/topics of concern in the field of instructional technology. (F, S, S)

INST 790 Internship in Instructional Technology Credit 3 (1-4)
This course is a professional laboratory designed to provide the student with on-the-job training and direct experiences relating to the professional track she/she has chosen within the program. Students have an opportunity to develop research in an area related to practical experience. (F, S, S)

INST 791 Thesis/ Special Project Research and Development Credit 3 (3-0)
This course is used to complete the capstone experience within the Instructional Technology Master’s Degree Program. Students are expected to conduct appropriate library research and complete an original project or research during this course. (F, S, S)

INST 799 Special Project/Thesis Continuation Credit 1 (1-0)
This course is used to complete the capstone experience within the Instructional Technology Master’s Degree Program. Students are expected to conduct appropriate research and complete an original project or research during this course. This course can only be taken after a student has successfully completed INST 791. (F, S, S)

Graduate Faculty

Department: Curriculum and Instruction
Chair: Dr. Dorothy Leflore

David Boger, B.S., Livingston College; M.S., New Mexico Highlands University; Ph.D., University of New Mexico; Professor (Elementary Education)
Panganienia Burns, B.S., Jackson State University, Ph.D., Kansas State University, Assistant Professor Professor (Elementary Education)
Tyrette S. Carter, B.A., University of Virginia, M.Ed. Averett College, Ph.D. University of Virginia, Assistant Professor Professor (Elementary Education)
Elizabeth Jane Davis, B.A., University of Virginia, M.Ed. Averett College, Ph.D. University of Virginia, Assistant Professor Professor (Elementary Education)
Loury Floyd, B.S., North Carolina A&T State University; M.S., University of Wisconsin-La Crosse; Ph.D., The College of William and Mary; Assistant Professor (Special Education)
Anthony Graham, B.A., University of North Carolina at Chapel Hill; M.Ed, University of North Carolina at Greensboro; Ph.D., University of North Carolina at Greensboro; Assistant Professor (Elementary Education)
Karen D. Guy, B.S., North Carolina A&T State University; M.Ed., North Carolina Central University; Ed.D. University of North Dakota; Director of Student Teaching and Educational Internships; Assistant Professor (Elementary Education)
Vivian Harding Hampton, B.A., North Carolina Central University; M.Ed., Howard University; Ph.D., University of Maryland; Associate Professor (Elementary Education)
Pamela I. Hunter, B.A., Livingston College; M.Ed., University of North Carolina at Greensboro; Ph.D., Ohio State University; Elementary Education Coordinator; Associate Professor (Elementary Education)
Ioney James B.A., University of the West Indies, M.S. Central Connecticut State University, Ph.D. University at Albany, Associate Professor (Elementary Education)
Muktha Jost, B.A., Madras University; M.S., University of Kansas; Ph.D., Iowa State University; Assistant Professor (Instructional Technology)
Cathy Kea, B.A., North Carolina Central University; M.S., University of Wisconsin-LaCross; Ph.D., University of Kansas; Associate Professor (Special Education)
Dorothy D. Leflore, B.S., Mississippi Valley State University; M.S., University of Oregon; Ph.D., University of Oregon (Chairperson)
Stephen McCary-Henderson, B.S., North Carolina Agricultural and Technical State University; M.Ed. University of Southern Mississippi; Ph.D., Union Institute and University; Adjunct Assistant Professor (Mathematics)

Barbra F. Mosley, B.A North Carolina A & T State University, M.S. North Carolina A & T State University, Professor (Instructional Technology)
Ph.D. Virginia Polytechnic Institute and State University, Adjunct Assistant Professor (Instructional Technology)

Karen Smith-Gratto, B.A., Christopher Newport College; M.A., Ph.D., University of New Orleans; Associate Professor (Instructional Technology)

Thomas J. Smith, B.A., Manchester College; M.S., Indiana University; Ph.D., University of South Carolina; Assistant Professor (Elementary Education)

Dawn C. Waegerle, B.A., M.A. Oral Roberts University, Ed.D. College of Williams and Mary; Assistant Professor (Special Education)

Simon V. Whittaker, B.S., University of Detroit Mercy, M.S., Grambling State University, Ed.D., Grambling State University; Assistant Professor (Instructional Technology)

Ereka R. Williams, B.S., Fayetteville State University; M.A., Fayetteville State University; Ph.D., University of North Carolina at Greensboro; Assistant Professor (Elementary Education)
OBJECTIVE

The Master of Science Program in Electrical Engineering provides graduate level education for advanced professional practice or further graduate studies. The program is open to students with a bachelor’s degree in a scientific discipline from an institution of recognized standing. The Doctoral Program is the terminal degree within the Department of Electrical and Computer Engineering at North Carolina A&T State University. The educational objectives of the graduate programs in Electrical Engineering are as follows:

1. To provide master and doctoral levels of study for students who have completed their bachelor’s or master’s degrees from North Carolina A&T State University, or an ABET accredited, equivalent university.

2. To provide local practicing electrical engineers from the Piedmont Triad with a part-time graduate program in electrical engineering.

3. To provide the region with a full-time graduate electrical engineering program.

4. To foster research in electrical engineering for the benefit of North Carolina A&T State University and its graduate students.

5. To enrich the undergraduate program as a result of student interaction with high quality engineering faculty who are concerned with graduate study and research.

6. To provide a graduate level electrical engineering resource base to support electrical engineering activities in local and regional industry and in government.

7. To foster industrial development in the state and region.

The programs emphasize areas of specialization, which are the current strengths of the department. Thus, the department offers the following four areas of concentration for the graduate programs:

- Computer Engineering
- Communications and Signal Processing
- Electronic and Optical Materials and Devices
- Power Systems and Control

There are other academic programs at the university that are related to the graduate programs in Department of Electrical and Computer Engineering. These programs are important because they include academic subject matter of potential interest to students as supporting courses and areas of minor concentration. Specific supporting master’s degree programs include:

- Applied Mathematics, Physics, Chemistry
- Computer Science
- Industrial Engineering
- Mechanical Engineering
- Architectural Engineering
- General (interdisciplinary) Engineering
DEGREES OFFERED

Master of Science - Electrical Engineering
Doctor of Philosophy - Electrical Engineering

ADMISSION REQUIREMENTS

ADMISSION REQUIREMENTS FOR MASTERS DEGREE PROGRAM

A student must first be admitted to the Graduate School completing the required application forms and submitting along with two official copies of the student’s undergraduate and/or graduate transcripts to the Graduate School. An official GRE score is required for all overseas students. Satisfying the requirements described does not guarantee admission. Students are admitted solely by the department in three categories:

Unconditional Admission

An applicant may be unconditional admitted to the MSEE program if he/she possesses an undergraduate degree in Electrical Engineering from an ABET accredited institution with an overall GPA of 3.0 or better on a 4.0 scale. In addition, each applicant must have a 3.0 average in all of his or her engineering courses. International students are not given unconditional status unless they submit the GRE scores to the Graduate School.

Provisional Admission

Applicants may be granted provisional admission if they do not qualify for unconditional admission due to one or more of the following reasons:

a) Applicant has a non-Electrical Engineering baccalaureate engineering degree with a GPA of 3.0 or better, but he/she is deficient in required background courses: (Note: Applicants must take more than 4 background courses).

b) Applicant who does not have a degree from an ABET accredited curriculum (e.g. international students) did not submit the GRE scores. A minimum GRE score of Verbal + Quantitative = 1100 is required for the unconditional status.

c) Applicant has an overall GPA less than 3.0 in Electrical Engineering, but has a GPA over 2.8.

d) Electrical Engineering student has a GPA less than 2.8 with a minimum GRE Verbal + Quantitative scores of 1100.

A provisionally admitted student must achieve unconditional admission after completing all background courses and 9 graduate credit hours with an average of 3.0 or better. Upon the satisfaction of the above condition, the student may request through the Graduate Coordinator for conversion to the unconditional status by the Graduate School.

A Provisional student must not take more than 12 graduate credit hours in Electrical Engineering prior to receiving unconditional admission to the MSEE program. It is the student’s responsibility to request his/her status change from the provisional status to the unconditional status by the Graduate School through the Graduate Coordinator. Students who fail to have their status upgraded run the risk of not receiving graduate credit for completed graduate courses.

Post-Baccalaureate Studies (PBS)

This category applies to students lacking a baccalaureate degree in engineering and requiring 9-15 hours of prerequisites in general engineering background who possess a GPA of 3.0 or better from an accredited program.

Upon completion of the required background courses with a “B” average or better, these students may reapply to the graduate program. However, the PBS student must not take more than 12 graduate credit hours in Electrical Engineering prior to applying for admission to the MSEE program. No more than 12 graduate credit hours earned in PBS status can be counted in his/her MSEE program.
All graduate students admitted in the Department of Electrical and Computer Engineering must meet with the Graduate Coordinator to obtain information about Graduate Program. The Graduate Coordinator assists students for registration and course selection until students select a permanent advisor by mutual agreement between the student and the faculty member. Students must select a permanent advisor no more than 9 credit hours into the program or by the end of the first semester.

ADMISSION REQUIREMENTS FOR DOCTORAL DEGREE PROGRAM

All applications for admission to the Ph.D. program are subject to review by the Graduate Curriculum Development (GCD) Committee in the Department. The GCD Committee’s recommendation is not subject to further review. Satisfying the requirements described below does not guarantee admission. Denial of admission does not necessarily imply a negative evaluation of an applicant’s qualification. Limited space, facilities, funding and mismatch in areas of interest may place limitations on the number of students who may be admitted.

Unconditional Admission

The minimum admission requirements for the Ph.D. program are as follows:

1. The student seeking a Doctor of Philosophy Degree in Electrical Engineering must possess a Master of Science Degree in Electrical Engineering, Computer Engineering, or related disciplines.
2. The applicant should have an overall graduate GPA of 3.0 or better on a 4.0 scale.
3. The applicant must submit his/her GRE scores to the Department of Electrical and Computer Engineering.
4. The application must include three letters of recommendations, one of which must come from an individual knowledgeable of the student’s graduate performance and potential. The recommendations must be sent to the Graduate School in sealed envelopes.
5. International students from non-English speaking countries must submit a TOEFL score.

Provisional Admission

Applicants may be granted provisional admission if they do not qualify for unconditional admission due to one or more of the following reasons:

a) Applicant does not have a 3.0 overall GPA in his/her master’s degree. (Note: Applicant must have at least a 3.0 overall graduate GPA).

b) Applicant has a non-Electrical Engineering baccalaureate engineering degree with a GPA of 3.0 or better, but he/she is deficient in required background courses. (Note: Applicant must complete more than 4 background courses).

These applicants must submit their GRE scores to the Department of Electrical and Computer Engineering. The students in the provisional admission category must obtain 3.0 GPA after 12 credit hours earned in less than a year. Their status will then be changed to the unconditional status after this change is requested through the Graduate Coordinator.

All graduate students admitted in the Department of Electrical and Computer Engineering meet with the Graduate Coordinator to obtain information about Graduate Program. The Graduate Coordinator assists students for registration and course selection until students select a permanent advisor by mutual agreement between the student and the faculty member. Students must select a permanent advisor no more than 9 credit hours into the program or by the end of the first semester.
MASTER'S DEGREE PROGRAM REQUIREMENTS

PROGRAM OPTIONS AND CREDIT-HOUR REQUIREMENTS

The Master of Science in Electrical Engineering program consists of three options: (a) Thesis Option (b) Project Option and (c) Course Only Option. The Thesis Option requires a minimum of 24 hours of coursework, at least 1 hour of 792, and 6 credit hours of master’s thesis 797. The Project Option requires a minimum of 30 hours of coursework, at least 1 hour of 792, and 3 hours of 796. The Course Only Option requires 33 hours of coursework and at least 1 hour of 792. At least 12 credit hours for the thesis option and 15 credit hours for the project and course only options must be at or above the 700 level. A maximum of 6 hours of coursework may be taken outside the department, subject to approval by the student Advisory Committee.

SELECTION OF ADVISOR

At the beginning of the program, the student meets with the Graduate Coordinator to obtain information about the Graduate Program. The Graduate Coordinator assists the student for registration and course selection until the student selects a permanent advisor by mutual consent. Students must select a permanent advisor no more than 9 credit hours into the program or by the end of the first semester.

THE GRADUATE PLAN OF STUDY FOR THE MASTER DEGREE PROGRAM

Before the completion of 12 credit hours of coursework, the student and his/her advisor must establish the Graduate Plan of Study for the student’s master’s program and submit the original with signatures of all members of the Advisory Committee to the Department Office with copies to the Graduate Coordinator, the Graduate School and all committee members. The student must submit the Graduate Plan of Study no later than the completion of 12 credit hours. The Graduate Plan of Study must show the committee chairperson, other committee members, and a chronological list of courses approved by the student’s advisor. A committee member’s signature on the Graduate Plan of Study denotes their approval of the plan for the student’s master’s program. After approval by the Graduate Coordinator, the Graduate Plan of Study becomes the student’s official guide to completion of his/her master’s degree program.

CHANGE OF ADVISOR AND STUDY PLAN

A student may change his/her advisor at any time through a mutual consent. When a student changes his/her advisor, the student must submit a revised Graduate Plan of Study including signatures by the new advisor and all committee members and the consent of the previous advisor. After the submission of a Graduate Plan of Study, a student must resubmit a changed Graduate Study Plan to the Graduate Coordinator indicating that the plan has been “REVISED” and including the signatures of his/her advisor and all committee members.

THE ADVISORY COMMITTEE

The advisor and the student form the Advisory Committee for the student’s thesis/project before the submission of the Graduate Plan of Study. In general, the student’s committee will have a minimum of three members for the thesis option and two members for the project option. The chair of the Advisory Committee must be a faculty member in the Department of Electrical and Computer Engineering. It is expected that members of this committee will be selected from faculty who have both the time and the interest to assist the particular student. Only one member of the committee may be selected from outside of the department. A co-advisor may be selected from outside of the department for the student Advisory Committee. A co-advisor is responsible for the student’s research work and financial support in a spirit of cooperation with the main advisor in the department. The main advisor is responsible for advising the overall plan of the student’s degree program. However, a co-advisor from outside of department must apply in writing and be approved by the Graduate Curriculum Development (GCD) Committee in the department.

THESIS/PROJECT ORAL EXAMINATION

The student must present his/her thesis/project work to the Advisory Committee for the thesis or project Oral Examination. In order to schedule the thesis/project Oral Examination, the student must submit an Application for Oral Examination including signatures of all members of the Advisory Committee to the departmental office at least two weeks prior to the date of the Oral Examination. This notification must include the date, time and place of the Oral Examination. The student requesting his/her Oral Examination must distribute a copy of the thesis/project to all
members of his/her committee two weeks prior to the date of the Oral Examination. The copy of the application form for the Oral Examination, as approved by the Graduate Coordinator, must be sent to the members of the committee to confirm the approval, date and place. If any committee member cannot attend the scheduled Oral Examination, it must be rescheduled. The location of a thesis/project Oral Examination must be on-campus so that the presentation is accessible to faculty, staff and students.

SUBMISSION OF THESIS/PROJECT

Upon passing the thesis/project Oral Examination, the student must have the thesis approved by the advisor and the chairman of Electrical and Computer Engineering Department. The thesis must be submitted to the Graduate School by the deadline given in the academic calendar, and must conform to the Guide for Preparation of a Thesis, a copy of which may be obtained from the Graduate School. The student’s project report for the project option must be submitted to the departmental office.

SUMMARY OF PROCEDURES FOR THE MASTER’S DEGREE PROGRAM

1. Apply for admission to the Graduate School.
 (a) The application and all supporting documentation are sent to the Graduate School.
 (b) The application material includes the followings:
 - The signed application form, application processing fee, letters of recommendation, N.C. residency form (if applicable), acknowledgement card, letter of intent, official transcripts, and other supporting documents
2. Student receives admission decision from the Graduate School.
3. Student submits the enrollment intention card to the Graduate School.
4. Student meets with the Graduate Coordinator to obtain information about graduate programs.
5. Student prepares course schedule and registers for classes under the supervision of the Graduate Coordinator.
6. Graduate Coordinator may assign a temporary advisor until a permanent advisor is found.
7. Student selects a permanent advisor no more than 9 credit hours into the program or by the end of the first semester.
8. Student completes the Plan of Study for the Master’s program in consultation with his/her advisor no later than the completion of 12 credit hours including the following:
 - Selection of the Program Option (Thesis, Project, and Course Only)
 - Selection of the advisory committee members according to the program option
 - Course list according to the coursework requirement
 - Signatures of all members of the advisory committee
9. Student submits the original Plan of Study to the departmental office along with copies to the Graduate Coordinator, the Graduate School and all committee members no later than the end of the second semester.
10. This Plan of Study becomes the student’s official guide for the student’s master’s degree program.
11. If a student decides to change his/her Plan of Study, the student must restart from Step 7 above.
 - The revised Plan of Study must include the word “REVISED”.
12. Student completes all the coursework.
13. For the Thesis/Project options, student schedules the Thesis/Project presentation and defense in consultation with his/her advisor, and submits the Application for Oral Examination to the Graduate Coordinator and the Graduate School with all signatures from the advisory committee. Upon approval of the request, the student submits the written report for the Project Option or the draft of the thesis for the Thesis Option to all committee members for review at least two weeks prior to the suggested date. The student completes the Thesis/Project presentation and defense.
14. The examination result is sent to the Graduate School with signatures of all committee members and the Graduate Coordinator within 48 hours.
15. Student submits Application for Graduation to the Graduate Coordinator, and then the Graduate Coordinator submits Final Graduate Clearance Checklist to the Graduate School.
16. All of the required documentation is submitted to the Graduate School and the Department Office.
17. The student graduates.
DOCTORAL DEGREE PROGRAM REQUIREMENTS

CREDIT-HOUR REQUIREMENTS

The Ph.D. program in Electrical Engineering is based on the Dissertation Option. This program requires 24 credit hours of coursework. At least 12 credit hours must be at the 800 level. 600 level courses are not counted in the coursework requirement except for courses related to student’s Qualifying Examination. A minimum of 12 credit hours of doctoral dissertation 997, 3 hours of 992, 3 hours of 991 and 3 hours of 995 are required. No more than 6 credit hours at the graduate level in an area outside of electrical engineering may be accepted to satisfy a graduate area concentration. Thus, a total of 45 credit hours are required for the doctoral degree. The student is encouraged to take all courses related to the subjects selected for his/her Qualifying Examination.

DISSERTATION RESEARCH

There is no limit to the maximum number of dissertation credits for Ph.D. students. However, no more than 12 dissertation credits are counted toward the 45 credit hours requirement described above. Student can not register the dissertation credits before passing Qualifying Examination.

SELECTION OF ADVISOR

At the beginning of the first semester, each student meets with the Graduate Coordinator for the assignment of an advisor in an area of interest to the student. The Graduate Coordinator assists students with registration and course selection until students select a permanent advisor. By the end of the first semester or the first 9 credit hours for each student, a permanent advisor is identified.

DOCTORAL ADVISORY COMMITTEE

The advisor and the advisee must form the Advisory Committee in the second semester or before the student completes 12 hours of course work. The Advisory Committee for a Ph.D. student consists of a chairperson in the student’s major subject and four other members. The Advisory Committee must include a Graduate School Representative selected from outside of the department in an area not related to the student’s dissertation area. The Graduate School Representative is appointed by the Graduate School for monitoring the fair evaluation of the exams for the student’s degree program. The Graduate School Representative attends the preliminary and final oral examinations, and must sign the reports of the examinations. However, he or she does not participate in directing the student’s technical work. The chair must be selected from the Department of Electrical and Computer Engineering based on the area of emphasis chosen by the student. More than half of the members must be selected from the Department of Electrical and Computer Engineering. The Advisory Committee may consist of co-advisor. A co-advisor from outside of the department must apply in writing and be approved by the Graduate Curriculum Development (GCD) Committee in the department.

THE GRADUATE PLAN OF STUDY FOR THE DOCTORAL PROGRAM

Before the student completes 12 credit hours of course work, the student and his/her advisor establish the Graduate Plan of Study for the student’s doctoral program and submit the original with signatures of all members of the Advisory Committee to the Department Office with copies to the Graduate Coordinator, the Graduate School and all committee members. The Graduate Plan of Study shows the committee chairperson, other committee members, and a chronological list of courses approved by the student’s advisor. A committee member’s signature on the Graduate Plan of Study denotes their approval of the plan for the student’s doctoral program. After approval by the Graduate Coordinator in the department, the Graduate Plan of Study becomes the student’s official guide to completion of his/her doctoral program and the official list of individuals who form the Ph.D. Advisory Committee.

RESIDENCE REQUIREMENTS

Each Ph.D. student must secure at least two residence credits through registration in continuous semesters at North Carolina A&T State University. Residence credit is determined from the number of semester hours completed during a regular semester according to the following table. Summer registration is not required. However, residence credit for a six-week summer session equals one-half that of a regular semester. For example, completing a three-credit course during a six-week summer session will earn 1/6 of a regular semester residence credit.
CHANGE OF COMMITTEE MEMBERS AND THE PLAN OF STUDY

A student may change his/her advisor at any time through a mutual consent. When a student changes his/her advisor, the student must submit a revised Graduate Plan of Study including signatures by the new advisor and all committee members and the consent of the previous advisor. After the submission of a Graduate Plan of Study, a student must resubmit a changed Graduate Study Plan to the Graduate Coordinator indicating that the plan has been “REVISED” and including the signatures of his/her advisor and all committee members.

Ph.D. QUALIFYING EXAMINATION

The purpose of the Qualifying Examination is to identify students who are qualified to work toward the Ph.D. degree in Electrical Engineering by requiring these students to demonstrate basic competence in a broad range of relevant subjects. Students are not expected to engage in research until they have passed their Qualifying Examination.

All students in the doctoral program must take this examination within two years plus one semester of their admission to the Ph.D. program. Only students with unconditional status can apply for the Qualifying Examination. Any students in provisional status can not sit for the Qualifying Examination. A student must be enrolled with a 3.0 GPA or better at the time of the examination. A student must also have the approved Graduate Plan of Study for his/her doctoral program on file with the Graduate School prior to scheduling the exam. The Qualifying Examination is given each regular (Fall and Spring) semester on two successive days during the week before the final exam period. A registration notice will be posted outside the Department Office in the middle of each academic semester. The student must apply for the Qualifying Examination by the posted deadline.

The examination consists of a three-hour written examination for each subject and covers two subjects per day in two consecutive days. At the time of registration, the student declares the track in which he or she will be taking the examination. Each student must select only two subjects in his/her concentration area and two subjects from other areas. Students must obtain an overall score of at least 80% to pass the examination. A student who has failed the Qualifying Examination one time is given a second chance to retake the Qualifying Examination within a year. A student who needs to retake the examination can not change any subjects selected in the first attempt. The Graduate Coordinator will notify each examinee of his or her results by letter within three weeks from the date of examination.

A student who wants to retake the Qualifying Examination must apply the Qualifying Examination by the posted deadline. No student is permitted to take the Qualifying Examination more than twice. A student not recommended for re-examination, or who fails the exam on a second attempt is afforded the opportunity to withdraw from the university. A student who chooses not to withdraw will have his or her graduate program terminated upon completing the semester in which the denial or second failure occurs. Also, a student who fails to take the examination or re-examination at the prescribed time is considered to have taken and failed the examination or re-examination.

Ph.D. PRELIMINARY ORAL EXAMINATION

After passing the Qualifying Examination, each Ph.D. student must complete a preliminary oral examination conducted by the student's Advisory Committee, which the representative from the Graduate School attends. This is an Oral Examination and defense of the student’s dissertation proposal. Passing this exam allows the Graduate School to enter the student into "Ph.D. Candidacy".

Unanimous approval by the Advisory Committee is required to pass the examination. Approval may be conditioned on satisfactory completion of additional work. In this situation, a student passes the examination when these conditions are met. A student is admitted to candidacy for the Ph.D. degree only upon passing the preliminary examination. Failure of the examination terminates the student's graduate study unless the student's Advisory
Committee unanimously recommends re-examination. Only one re-examination is permitted and at least one full semester must elapse before the re-examination.

The examination may be held no earlier than the end (final exam week) of the second year of graduate study and no later than one semester (or four months) prior to the Ph.D. final oral examination. The Preliminary Oral Examination is scheduled at the request of the student and only upon the approval of the student’s Advisory Committee. A student cannot submit a request to schedule an oral examination unless the student's Graduate Plan of Study has been approved by the Graduate Coordinator. The student must be in good academic standing when the request is submitted and when the examination is held.

The student must submit the Application for Oral Examination with the signatures of all members of the Advisory Committee to the Department Office at least two weeks prior to the date of the Preliminary Examination. The application form must include the date, time and place of the preliminary examination. The student requesting his/her oral examination must distribute a copy of the written report to all members of his/her committee two weeks prior to the date of the Preliminary Oral Examination. The copy of the application form for the preliminary examination (approved by the Graduate Coordinator) is sent to the student and the members of the committee to confirm the approval, date and place of the examination. If any committee member can not attend a scheduled preliminary examination, it must be rescheduled.

Ph.D. FINAL ORAL EXAMINATION

Each Ph.D. student must pass a Final Oral Examination conducted by the student's Advisory Committee, which a representative from the Graduate School attends. This examination is the final dissertation defense presentation that is scheduled after a dissertation is completed. It consists of the defense of the methodology used and the conclusions reached in the research in the dissertation. Unanimous approval by the Advisory Committee is required for passing an oral examination. Such approval may be conditioned on satisfactory completion of additional work. Failure of the examination terminates the student's graduate study unless the student's Advisory Committee unanimously recommends re-examination. Only one re-examination is permitted.

The examination may be held no earlier than one semester (or four months) after admission to candidacy. The examination must be held on or before the deadline for final oral examinations (see the academic calendar in the Graduate Catalog) if the degree is to be awarded at the end of that semester otherwise, the degree is awarded at the end of the following semester. The examination is scheduled only upon the request of the student and the approval of his or her Advisory Committee. The student must submit the Application for Oral Examination with the signatures of all members of the Advisory Committee to the Department Office at least two weeks prior to the date of the Final Oral Examination. The application form must include the date, time and place of the Final Oral Examination. The dissertation must be completed and copies of it must be distributed to all members of his/her Advisory Committee two weeks prior to the date of the Final Oral Examination. The copy of the application form for the Final Oral Examination (approved by the Graduate Coordinator) is sent to the student and the members of the committee to confirm the approval, date and place of the defense. If any committee member can not attend a scheduled Final Oral Examination, it must be rescheduled.

SUBMISSION OF DISSERTATION

Upon passing the Ph.D. Final Oral Examination, each Ph.D. student must have the dissertation approved by each member of the student's Advisory Committee. The dissertation must be submitted to the Graduate School by the deadline given in the academic calendar, and must conform to the Guide for Preparation of Thesis and Dissertations, a copy of which may be obtained from the Department Office.

SUMMARY OF PROCEDURES FOR THE DOCTORAL PROGRAM

1. Apply for admission to the Graduate School
 a) The application and all supporting documentation are sent to Graduate School.
 b) The application material includes the following:
 - The signed application form, application processing fee, letters of recommendation, N.C. residency form (if applicable), acknowledgement card, letter of intent, official transcripts, and other supporting documents
2. Student receives admission decision from the Graduate School.
3. Student reports his or her enrollment intentions to the Graduate School.
4. Student meets with the Graduate Coordinator to obtain information about graduate programs.
5. Student prepares the course schedule and registers for first semester classes under the supervision of the Graduate Coordinator.

6. Graduate Coordinator may be a temporary advisor until a permanent advisor is found.

7. Student selects a permanent advisor no more than 9 credit hours into the program.

8. Student completes the Graduate Plan of Study for the doctoral program in consultation with his/her advisor during the second semester and includes the following activities in this process:
 - Selection of the advisory committee members. The advisory committee consists of a chairperson in the student’s major subject, and four other members.
 - Selection of course list according to coursework requirements. The coursework may include courses in preparation for the Qualifying Examination.
 - Obtaining signatures of all members of the advisory committee

9. Student submits the original Plan of Study to the Department Office with copies to the Graduate Coordinator, the Graduate School and all committee members no later than the end of the second semester.

10. This Plan of Study becomes the student’s official guide for the student’s Ph.D. degree program.

11. If a student decides to change his/her Plan of Study, the student must restart from Step 7 above.

12. The revised Plan of Study must include the word “REVISED”.

13. Student takes Qualifying Examination within two years plus one semester of student’s admission to the Ph.D. program.

14. Whenever the direction of the student’s dissertation topic has been determined in consultation with his/her advisor, the student submits the dissertation title and the outline of the proposed research to the student's Advisory Committee.

15. Student completes all coursework.

16. After passing the Qualifying Examination, and when the proposed research is in a mature stage and is likely to succeed in experimentation, the student schedules the Preliminary Oral Exam in consultation with his/her advisor and forwards the exam schedule to the Graduate Coordinator and the Graduate School. After their approval, the student and his/her advisor post the time and place of the examination and submit a written report to all committee members including the representative of the Graduate School for their review at least two weeks prior to the examination date.

17. The examination result is sent to the Graduate School in 48 hours and if the examination has been passed without conditions, the student is admitted as a "Ph.D. Candidate".

18. At least one semester (or four months) of "Ph.D. Candidacy", the student schedules the Final Oral Examination in consultation with his/her advisor. The student must submit the Application for Oral Examination with the signatures of all members of the Advisory Committee to the Graduate Coordinator at least two weeks prior to the date of the Final Oral Examination. Upon approval of this request, the student and his/her advisor must post the time and place of the exam and submit a copy of the draft of his/her dissertation to all committee members including the representative of the Graduate School for their review by two weeks prior to the suggested date.

19. The examination result is sent to the Graduate School with signatures of all advisory committee members and the in 48 hours.

20. Student submits Application for Graduation to the Graduate Coordinator, and then the Graduate Coordinator submits Final Graduate Clearance Checklist to the Graduate School.

21. Student submits all required documentation to the Graduate School and the Department Office.

22. The student graduates.
SUMMARY OF COURSE OFFERINGS

The 600 level courses numbered 600-699 are open to qualified seniors and graduate students for the master’s program. Courses numbered 700 and above are only open to graduate students.

<table>
<thead>
<tr>
<th>COURSE #</th>
<th>DESCRIPTION</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEN 602</td>
<td>Semiconductor Theory and Devices</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 606</td>
<td>Digital Electronics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 608</td>
<td>Analog Electronics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 610</td>
<td>Power Electronics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 614</td>
<td>Integrated Circuit Fabrication Methods</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 615</td>
<td>Silicon Device Fabrication Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 621</td>
<td>Embedded Systems Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 622</td>
<td>Embedded Systems Design Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 623</td>
<td>Digital Systems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 624</td>
<td>Computer Organization and Architecture Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 629</td>
<td>VLSI Circuit Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 630</td>
<td>VLSI Design Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 647</td>
<td>Introduction to Telecommunication Networks</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 650</td>
<td>Digital Signal Processing I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 651</td>
<td>Digital Signal Processing Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 656</td>
<td>Probability and Random Processes</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 657</td>
<td>Image Processing</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 658</td>
<td>Digital Image Processing Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 661</td>
<td>Power Systems Analysis</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 662</td>
<td>Advanced Power Systems Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 668</td>
<td>Automatic Control Theory</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 669</td>
<td>Control Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 674</td>
<td>Genetic Algorithms</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 678</td>
<td>Introduction to Artificial Neural Networks</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 679</td>
<td>Machine Intelligence Laboratory</td>
<td>2 (1-3)</td>
</tr>
<tr>
<td>ELEN 685</td>
<td>Selected Topics in Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 686</td>
<td>Special Projects Var. (1-3)</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 701</td>
<td>Electronic Ceramics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 710</td>
<td>Wave and Fields in Radio Frequency (RF) and Optoelectronics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 720</td>
<td>Theoretical Issue in Computer Engineering</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 721</td>
<td>Fault-Tolerant Digital System Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 723</td>
<td>System Design Using Programmable Logic Devices</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 724</td>
<td>Mixed-Signal VLSI Design</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 725</td>
<td>Pervasive Computing Systems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 727</td>
<td>Switching and Finite Automata Theory</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 749</td>
<td>Digital Communications</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 752</td>
<td>Wireless Information Networks</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 762</td>
<td>Network Matrices and Graphs</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 764</td>
<td>Power System Planning</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 785</td>
<td>Master Special Topics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 792</td>
<td>Master Seminar</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td>ELEN 793</td>
<td>Master Supervised Teaching</td>
<td>3 (0-3)</td>
</tr>
<tr>
<td>ELEN 794</td>
<td>Master Supervised Research</td>
<td>3 (0-3)</td>
</tr>
<tr>
<td>ELEN 796</td>
<td>Master Project</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 797</td>
<td>Master Thesis Var. (3-6)</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 799</td>
<td>Master Thesis Continuation</td>
<td>1 (0-1)</td>
</tr>
<tr>
<td>ELEN 801</td>
<td>Solid State Devices</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 802</td>
<td>Advanced Solid State Theory</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 803</td>
<td>Compound Semiconductor Materials and Devices</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ELEN 804</td>
<td>Semiconductor Material and Device Characterization</td>
<td>3 (3-3)</td>
</tr>
</tbody>
</table>
ELEN 805 Thin Film Technology for Device Fabrication 3 (3-0)
ELEN 810 Theory and Techniques in Photonics 3 (3-0)
ELEN 812 RF CMOS Integrated Circuits 3 (2-3)
ELEN 821 Advanced Computer Organization and Architecture 3 (3-0)
ELEN 822 Error-Correcting Codes 3 (3-0)
ELEN 823 Advanced VLSI Design 3 (3-0)
ELEN 847 Telecommunication Networks 3 (3-0)
ELEN 848 Information Theory 3 (3-0)
ELEN 849 Data Communications 3 (3-0)
ELEN 850 Digital Signal Processing II 3 (3-0)
ELEN 857 Pattern Recognition 3 (3-0)
ELEN 861 Power System Control and Protection 3 (3-0)
ELEN 862 Computer Methods in Power Systems 3 (3-0)
ELEN 865 Theory of Linear Systems 3 (3-0)
ELEN 866 Discrete Time Systems 3 (3-0)
ELEN 867 Neural Networks Design 3 (3-0)
ELEN 868 Intelligent Methods for Control Systems 3 (3-0)
ELEN 869 Machine Vision for Intelligent-Robotics 3 (3-0)
ELEN 870 Fuzzy Logic with Applications 3 (3-0)
ELEN 871 Nonlinear Control Systems 3 (3-0)
ELEN 885 Doctoral Special Topics 3 (3-0)
ELEN 991 Doctoral Qualifying Examination 3 (0-3)
ELEN 992 Doctoral Seminar 1 (0-1)
ELEN 993 Doctoral Supervised Teaching 3 (0-3)
ELEN 994 Doctoral Supervised Research 3 (0-3)
ELEN 995 Doctoral Preliminary Examination 3 (0-3)
ELEN 997 Doctoral Dissertation Var. (3-12)
ELEN 999 Doctoral Thesis Continuation 1 (0-1)

DESCRIPTION OF GRADUATE COURSES
Under the Master’s and Doctoral Degree Programs in
Electrical and Computer Engineering

ELEN-602. Semiconductor Theory and Devices Credit 3 (3-0)
This course is a study of the phenomena of solid-state conduction and devices using band models,
excess carriers in semiconductors, p-n junctions, and devices. Prerequisite: ELEN-460 or
consent of instructor.

ELEN-606. Digital Electronics Credit 3 (3-0)
This course covers analysis, design and applications of digital integrated circuits. These circuits
may include resistor-transistor logic (RTL), diode transistor logic (DTL), transistor-transistor
(TTL), emitter-coupled logic (ECL), metal-oxide-semiconductor (MOS) gates and
n-channel MOS (NMOS) logic, complementary MOS (CMOS) logic, Bipolar CMOS
(BiCMOS) structures, memory circuits, and interfacing circuits. Prerequisite: ELEN-460 or
consent of instructor.

ELEN-608. Analog Electronics Credit 3 (3-0)
This course covers the analysis, design and application of analog integrated circuits. These circuits
may include operational amplifiers, voltage comparators, voltage regulators, Integrated
Circuit (IC) power amplifiers, Digital to Analog (D/A) and Analog to Digital (A/D) converters,
voltage-controlled oscillators, phase-locked loops, other special-function integrated circuits.
Prerequisite: ELEN-460 or consent of instructor.

ELEN-610 Power Electronics Credit 3(3-0)
This course is an introduction to principles and methods of power electronics. Subjects covered are
semiconductor devices and their complementary components and systems, different static switching
converters like AC to DC AC to AC, DC to DC and DC to AC converters and their applications. Pre-
requisite: ELEN-320 or consent of instructor.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Lecture (L)</th>
<th>Tutorial (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEN-614</td>
<td>Integrated Circuit Fabrication Methods</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>This course presents the various processes utilized in the fabrication of semiconductor integrated circuits. Oxidation, diffusion, ion implantation, metallization, and epitaxial processes will be discussed. Limits on device design and performance will be considered. Prerequisite: ELEN-470 or consent of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-615</td>
<td>Silicon Device Fabrication Laboratory</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Laboratory experiments in the fabrication of silicon p-n junction diodes, MOS capacitors and MOS field effect transistors will be performed. Oxidation, diffusion, photolithography, and metallization techniques will be presented. Co-requisite: ELEN-614.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-621</td>
<td>Embedded Systems Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>This course is a survey of modern methods for specifying algorithms, simulating systems, and mapping specifications onto embedded systems. It presents an introduction to the technologies used in the design and implementation of programmable embedded systems, such as programmable processors, cores, memories, dedicated and configurable hardware, software tools, schedulers, code generators, and system-level design tools. Prerequisite: ELEN-427 or consent of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-622</td>
<td>Embedded Systems Design Laboratory</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>This laboratory course is an introduction to developing processor-based embedded systems. The development tools include a C++ cross compiler, an Electronically Programmable Read Only Memory (EPROM) and an Application Specific Integrated Circuit (ASIC) programmer. A student project is part of the laboratory requirements. Co-requisite: ELEN-621.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-623</td>
<td>Digital Systems</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Digital system top-down design and analysis will be presented. Topics include timing, power and performance issues in digital circuits, Very High Speed Integrated Circuit Hardware Description Language (VHDL)-based system analysis and synthesis, hardware-software co design, data-flow models and digital system primitives. Prerequisite: ELEN-427 or consent of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-624</td>
<td>Computer Organization and Architecture Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>This course covers the design of modern uniprocessors and their memory, and Input/Output (I/O) subsystems. Performance, microarchitecture, and design philosophies used to realize pipeline, superscalar, Reduced Instruction Set Computer (RISC) and Complete Instruction Set Computer (CISC) processors will be studied. Prerequisite: ELEN-427 or consent of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-629</td>
<td>VLSI Circuit Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>This course will study CMOS technology and device characteristics in order to develop layout design rules for VLSI circuit building blocks, such as inverters and logic gates. Layout techniques for complex gates and designing combinational and sequential logic circuits will be introduced. Prerequisite: ELEN-427 or consent of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-630</td>
<td>VLSI Design Laboratory</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>This is an introduction of Computer Aided Design (CAD) tools for integrated circuit design and verification. These CAD tools include; geometric pattern generators, design rule checkers, circuit simulators and Programmable Logic Array (PLA) generators. A student design project is part of the laboratory requirements. Co-requisite: ELEN-629.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEN-647</td>
<td>Introduction to Telecommunication Networks</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>This course introduces telecommunication networks utilization and design. Emphasis is on using and designing voice, video and image digital networks. Prerequisite: ELEN-400 or consent of instructor.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELEN-650. Digital Signal Processing I
Credit 3 (3-0)
This course develops a working knowledge of the basic signal processing functions, such as digital filtering, spectral analysis, and detection/post-detection processing. Methods of generating the coefficients for digital filters will be derived. Alternate structures for filters, such as infinite impulse response and finite impulse response will be compared. Prerequisite: ELEN-400 or consent of instructor.

ELEN-651. Digital Signal Processing Laboratory
Credit 2 (1-3)
Experiments and student projects will be performed which are related to the practical applications of digital signal processing techniques to data acquisition, digital filtering, control, spectral analysis and communications. Co-requisite: ELEN-650.

ELEN-656. Probability and Random Processes
Credit 3 (3-0)
This course covers probability, random variables, random processes, Gaussian processes, probabilistic description of signals and noise, including joint, marginal and conditional densities, autocorrelation, cross-correlation and power spectral density; linear and nonlinear transformations; linear least-squares estimation, and signal detection. Prerequisite: ELEN-400 or consent of instructor.

ELEN-657. Image Processing
Credit 3 (3-0)
This course deals with concepts and techniques for digital image analysis and processing. Topics include image representation, image enhancement, edge extraction, image segmentation, geometric structure, feature extraction, knowledge representation, and image understanding. Prerequisite: ELEN-400 or consent of instructor.

ELEN-658 Digital Image Processing Laboratory
Credit 2(1-3)
This laboratory course will demonstrate many important and practical applications of digital image processing techniques. The experiments include image enhancement, feature extraction, Hough transform, various transforms in spatial and frequency domains, image understanding and quantization. Co-requisite: ELEN-657 or consent of instructor.

ELEN-661. Power Systems Analysis
Credit 3 (3-0)
The course studies power system representation, transmission lines, symmetrical and asymmetrical faults, electric power flow, power systems control and stability. Prerequisite: ELEN-430.

ELEN-662. Advanced Power Systems Laboratory
Credit 2 (1-3)
In this laboratory course, basic concepts, transmission lines, power flows, faults, and transient and steady-state stability will be investigated. Prerequisite: ELEN-436 or consent of instructor. Co-requisite: ELEN-661.

ELEN-668. Automatic Control Theory
Credit 3 (3-0)
This course introduces the theory of linear systems represented by state equations. Topics include Jordan canonical form, solutions to state equations, relationship to transfer functions, stability, controllability, and pole placement design. Prerequisite: ELEN-410 or consent of instructor.

ELEN-669. Control Laboratory
Credit 2 (1-3)
This laboratory course demonstrates methods of system identification and control. Verifications of control system designs in both the time domain and frequency domain will be studied. Co-requisite: ELEN-661.

ELEN-674. Genetic Algorithms
Credit 3 (3-0)
This course covers the theory and application of genetic algorithms. Genetic algorithms combine a Darwinian survival-of-the-fittest with a randomized, yet structured, information exchange to form an improved search mechanism with surprising robustness. Engineering applications of genetic algorithms for design and control will be presented. Prerequisite: ELEN-410 or consent of instructor.
ELEN-678. Introduction to Artificial Neural Networks Credit 3 (3-0)
This course introduces neural network design and development. Emphasis is on designing and implementing information processing systems that autonomously develop operational capabilities in adaptive response to an information environment. Prerequisite: ELEN-400 or consent of instructor.

ELEN-679. Machine Intelligence Laboratory Credit 2 (1-3)
This laboratory will explore the design and development of intelligent, autonomous, and physical agents. An emphasis will be placed upon machine intelligence experiments with visual sensors, tactile sensors, robotic manipulators and autonomous inexpensive mobile robots. Prerequisite: ELEN-433 or consent of instructor. Co-requisite: ELEN-678.

ELEN-685. Selected Topics in Engineering Credit 3 (3-0)
This lecture course is used to introduce engineering topics of current interest to students and faculty. The subject matter will be identified before the beginning of the course. Prerequisite: consent of instructor.

ELEN-686. Special Projects Variable Credit (1-3)
This is an investigation of an engineering topic which is arranged between a student and a faculty advisor. Project topics may be analytical and/or experimental and should encourage independent study. Prerequisite: consent of instructor.

ELEN-701. Electronic Ceramics Credit 3 (3-0)
This course introduces the properties of ceramic materials in electronic applications. The effects of processing parameters on the ultimate device characteristics will be investigated. Prerequisite: ELEN-602 or consent of instructor.

ELEN-710. Wave and Fields in Radio Frequency (RF) and Optoelectronics Credit 3 (3-0)
This course emphasizes principles, phenomena and methods relevant to RF and lightwave technology. The topics will include basic electromagnetic propagation in free space and material media, guided electromagnetic waves, modes and mode coupling, and Bragg and other types of scattering. This course will establish the field principles of RF, integrated optic and fiber based devices and circuits. Prerequisite: ELEN-450 or ELEN-470 or consent of instructor.

ELEN-720. Theoretical Issues in Computer Engineering Credit 3 (3-0)
This course is designed to introduce some basic theoretical aspects of computer engineering. It includes selected topics in the set theory, elements of algebra such as semigroups, monoids, groups, rings, and fields, quotient groups and homomorphism theorems. It also includes finite state machines, the Myhill-Nerode theory, pseudo/random generators, linear feed back registers, introduction to error correcting codes and Turing Machines. Various applications will be demonstrated. Prerequisite: ELEN-427 or consent of instructor.

ELEN-721. Fault-Tolerant Digital System Design Credit 3 (3-0)
This course covers reliability, test generation, self-checking techniques, principles and applications of fault-tolerant design techniques. Prerequisite: ELEN-625 or consent of instructor.

ELEN-723. System Design Using Programmable Logic Devices Credit 3 (3-0)
This course will cover and compare many commercially available Programmable Logic Devices and consider their applications in both combinational and sequential logic system design. Students will also be familiarized with hardware description language such as VHDL and ABEL™ and shown how design ideas can be efficiently translated into programmable hardware implementations. Prerequisite: ELEN-623 or consent of instructor.

ELEN-724. Mixed-Signal VLSI Design Credit 3 (3-0)
This course will introduce CMOS circuit techniques for low-power, low-voltage mixed-signal integrated circuits. Continuous-time signal processing, sampled-data analog filters, delta-sigma data converters and mixed analog-digital layout techniques will be introduced. Prerequisite: ELEN-629 or consent of instructor.
ELEN-725. Pervasive Computing Systems Credit 3 (3-0)
This course is a study of Pervasive Computing (a.k.a. Ubiquitous Computing) which is the integration of computer technology into day-to-day life in a seamless manner. This course will address accepted design and implementation approaches relevant to this field, including those used for wearable computing, smart devices, intelligent environments, context aware computing, and user interfaces and interaction models. A course project will be assigned. Prerequisite: ELEN-621 or consent of instructor.

ELEN-727. Switching and Finite Automata Theory Credit 3 (3-0)
This course presents the abstract mathematical modeling of combinational and sequential switching networks. Finite automata theory and fault tolerant concepts with applications to both combinational networks and finite state machines will be presented. Prerequisite: ELEN-427 or consent of instructor.

ELEN-749. Digital Communications Credit 3 (3-0)
The fundamental theory and applications of the digital communications system are discussed based on the knowledge of the probability theory. Topics in digital communications include sampling, quantizing, coding, detection, modulation/demodulation, signal-to-noise ratio, and error probability. Prerequisite: ELEN-449 or consent of instructor.

ELEN-752. Wireless Information Networks Credit 3 (3-0)
Fundamental theory and applications of wireless mobile communication systems are covered for voice, data, and multimedia. Topics in wireless networks include characterization of radio propagation, source and channel coding, theory and analysis of wireless data networks, and wireless Local Area Networks (LANs). The wireless LANs discussion includes multiple access techniques and computer simulation of radio channels. Prerequisite: ELEN-452 or consent of instructor.

ELEN-762. Network Matrices and Graphs Credit 3 (3-0)
Use of vector space techniques in the description, analysis and realization of networks modeled as matrices and graphs. The course investigates vector space concepts in the modeling and study of networks. The system concept of networks is introduced and explored as a dimensional space consideration in terms of matrices and graphs. Prerequisite: ELEN-400 or equivalent.

ELEN-764. Power System Planning Credit 3 (3-0)
This course presents an overview of the issues and methods relevant to power systems planning. The course reviews the basics of financial analysis, regression analysis, forecasting, and reliability. Special topics relevant to power systems, such as deregulation, peak-load forecasts, load management and representation, and the loss-of-load probability (LOLP) method are also considered. Prerequisite: ELEN-661 or consent of instructor.

ELEN-785. Master Special Topics Credit 3 (3-0)
This lecture course is used to introduce engineering topics of current interest to master students and faculty. The subject matter will be identified before the beginning of the course. Prerequisite: Consent of instructor.

ELEN-792. Master Seminar Credit 1 (1-0)
Discussions and reports of subjects in electrical engineering and allied fields will be presented. Prerequisite: Master level standing.

ELEN-793. Master Supervised Teaching Credit 3 (0-3)
Students will gain teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment. Prerequisite: Master level standing.
ELEN-794. Master Supervised Research Credit 3 (0-3)
This course is supervised research under the mentorship of a faculty member. It is not intended to serve as the project or thesis topic of the master student. Prerequisite: Master level standing.

ELEN-796. Master Project Credit 3 (3-0)
The student will conduct advanced research of interest to the student and the instructor. A written proposal, which outlines the nature of the project, must be submitted for approval. This course is only available to project option students. Prerequisite: Master standing and Consent of advisor.

ELEN-797. Master Thesis Credit Variable (3-6)
Master of Science thesis research will be conducted under the supervision of the thesis committee chairperson leading to the completion of the Master thesis. This course is only available to thesis option students. Prerequisite: Master standing and Consent of advisor.

ELEN-799. Master Thesis Continuation Credit 1 (0-1)
The course is for Master’s students who have completed all required course works and all Master Project or Thesis credits. This optional course assists the student in maintaining full-time enrollment following completion of the Masters Project, ELEN796 or Masters Thesis, ELEN797. The course may be taken to allow time for the student to complete the final project or thesis write-up and to prepare for the masters project or thesis defense. Prerequisite: Completion of all required course works and master project or thesis credits for Master standing students and Consent of advisor.

ELEN-801. Solid State Devices Credit 3 (3-0)
This course deals with p-n junction and Schottky barrier diodes, bipolar junction and field effect transistors, heterostructure devices (e.g., heterojunction bipolar transistors and solar cells), and device modeling and simulation. Prerequisite: ELEN-602 or consent of instructor.

ELEN-802. Advanced Solid State Theory Credit 3 (3-0)
This course presents the physical properties of solids, including crystal lattice structure, atomic bonding, the band theory of electronic conduction, carrier mobilities, and scattering mechanisms. Prerequisite: ELEN-602 or consent of instructor.

ELEN-803. Compound Semiconductor Materials and Devices Credit 3 (3-0)
This course presents the physics of compound semiconductors, epitaxial crystal growth, quantum well and superlattice devices, compound semiconductor FETs, and photonic devices. Prerequisite: ELEN-602 or consent of instructor.

ELEN-804. Semiconductor Material and Device Characterization Credit 3 (3-0)
This course covers electrical, optical, and physical/chemical characterization of semiconductor materials and devices. Laboratory demonstrations will be presented on selected characterization techniques. Prerequisite: ELEN-602 or consent of instructor.

ELEN-805. Thin Film Technology for Device Fabrication Credit 3 (3-0)
This course will focus on the preparation and properties of thin film electronic materials (dielectrics, metals, epitaxial layers). Topics will include: basic vacuum technology; theories of condensation, nucleation and growth of thin films; deposition techniques (chemical vapor deposition, vaporization, sputtering); epitaxial growth of semiconductor materials (molecular beam epitaxy, vapor phase epitaxy, liquid phase epitaxy); and applications of the deposition processes to the fabrication of heterostructure devices. Prerequisite: ELEN-602 or consent of instructor.

ELEN-810. Theory and Techniques in Photonics Credit 3 (3-0)
This course will concentrate on photonic materials such as semiconductors and oxide materials for opto-electronic integrated optic and nonlinear optic guided wave devices such as lasers, modulators and fibers. The course will also cover photonic systems for computing, communications, sensing, and data acquisition, processing and storage. Prerequisites: ELEN-450 or ELEN-470 and ELEN-602.
ELEN-812. RF CMOS Integrated Circuits
Credit 3 (2-3)
This course covers the design of RF CMOS integrated circuits. Passive and active RF components and their modeling using modern CAD tools, high-frequency circuit design techniques, noise analysis and RF circuits such as low-noise amplifiers (LNA), mixers, voltage-controlled oscillators (VCO), power amplifiers, and wireless transceiver architectures will be presented. Prerequisite: ELEN-608 or consent of instructor.

ELEN-821. Advanced Computer Organization and Architecture
Credit 3 (3-0)
This course introduces the design and performance issues of array processors and multiprocessors. Very Long Instruction Word (VLIW), data-flow machines, array processors, interconnection networks and memory structures will be discussed. Prerequisite: ELEN-624 or consent of instructor.

ELEN-822. Error-Correcting Codes
Credit 3 (3-0)
In this course, the basic principles of coding, such as error control schemes, coding in communication systems, and block coding, are studied. Linear block codes, polynomial algebra and cyclic codes, block codes based on finite field arithmetic, convolution codes, coding for bursty channels, coding for bandwidth limited channels, codes for computer memories and error detection and correction methods will be discussed. Prerequisite: ELEN-629 or consent of instructor.

ELEN-823. Advanced VLSI Design
Credit 3 (3-0)
This course introduces the design of very high performance digital circuits, interconnect modeling, and packaging. Timing issues in digital circuits, designing memory and array structures, reliability and yield predictions, design synthesis, and validation and testing of VLSI circuits will be discussed. Prerequisite: ELEN-629 or consent of instructor.

ELEN-847. Telecommunication Networks
Credit 3 (3-0)
The course familiarizes the student with the concepts of the International Standards Organization Open Systems Interconnection (ISO OSI) standards for the seven layer network model. This course introduces techniques for the analysis and optimization of computer networks, and illustrates some of the technical issues of current networks. Prerequisite: ELEN-647.

ELEN-848. Information Theory
Credit 3 (3-0)
This course covers topics in classical information theory such as entropy, source coding, channel coding and rate distortion theory. Several related topics are discussed, including entropy for Markov sources and entropy for the extension of sources. Prerequisite: ELEN-749.

ELEN-849. Data Communications
Credit 3 (3-0)
This course is an extended study of digital communications. Various topics in the upper level of digital communications, such as channel coding, synchronization, multiplexing, multiple access, and frequency spreading are discussed. Prerequisite: ELEN-749 or consent of instructor.

ELEN-850. Digital Signal Processing II
Credit 3 (3-0)
This course deals with advanced topics in digital signal processing. Topics include the 2-D sampling theorem, the 2-D z-transform, the 2-D discrete Fourier transform, 2-D filters, and computational structures for the implementation of multi-dimensional digital signal processing algorithms. Prerequisite: ELEN-650 or consent of instructor.

ELEN-857. Pattern Recognition
Credit 3 (3-0)
This course covers classical topics in statistical decision function, Bayesian learning, error probability estimation, cluster-seeking, and deterministic approach. Several related topics are discussed, including stochastic approximation, feature selection and ranking, syntactic and structural pattern recognition. Prerequisite: ELEN-657.

ELEN-861. Power System Control and Protection
Credit 3 (3-0)
This course deals with power and voltage control systems, and power systems protection by relays. Related topics are also covered. Prerequisite: ELEN-661 or ELEN-668.

ELEN-862. Computer Methods in Power Systems
Credit 3 (3-0)
This course deals with commercially available software for modeling and analysis of electric power systems. Prerequisite: ELEN-661 or equivalent.

ELEN-865. Theory of Linear Systems Credit 3 (3-0)
This course introduces modern control system design and analysis. Topics include linear-quadratic regulators, state estimators, and discrete-time control systems. Issues discussed include stability, robustness, and optimality. Prerequisite: ELEN-668 or equivalent.

ELEN-866. Discrete Time Systems Credit 3 (3-0)
In this course, analyses and syntheses of discrete time systems are carried out using Z-transform and state variable representations. The controllability and observability, stability criteria, sampled spectral densities and correlation sequence, optimum filtering and control of random processes are discussed. Prerequisite: ELEN-668 or equivalent.

ELEN-867. Neural Networks Design Credit 3 (3-0)
This course covers the design of neural network systems using CMAC (Cerebellum Model Articulation Controller), back propagation, and multifunction hybrid networks. Prerequisite: ELEN-678 or equivalent.

ELEN-868. Intelligent Methods for Control Systems Credit 3 (3-0)
The course covers advanced control methods for dynamic systems. The focus will be on intelligent control algorithms, and adaptive and self-learning methods. Stability analysis and performance simulation will also be addressed. Prerequisite: ELEN-668 or consent of instructor.

ELEN-869. Machine Vision for Intelligent-Robotics Credit 3 (3-0)
This course is a study of visual/non-visual sensor technologies for the intelligent control of a robot. The course will cover image understanding, non-contact sensor analysis, and data fusion for intelligent robotics system design. Prerequisite: ELEN-657.

ELEN-870. Fuzzy Logic With Applications Credit 3 (3-0)
The course objective is to understand the basic theory and the foundations of fuzzy sets. Fuzzy logic is shown to contain evidence, possibility, and probability logic. This course emphasizes engineering applications in control, decision-making, and pattern recognition. The hardware/software implementation of those applications is also demonstrated. Prerequisite: ELEN-668 or consent of instructor.

ELEN-871. Nonlinear Control Systems Credit 3 (3-0)
This course explores the basic issues of nonlinear system analysis and control. The course will introduce the general characteristics of nonlinear behavior and some of the tools needed to analyze and understand them. It will also introduce basic concepts of stability theory, especially Lyapunov’s. Some basic design techniques for the control of these systems, such as the sliding mode method and feedback linearization will be introduced. Prerequisite: ELEN-668 or consent of instructor.

ELEN-885. Doctoral Special Topics Credit 3 (3-0)
This lecture course is used to introduce engineering topics of current interest to doctoral students and faculty. The subject matter will be identified before the beginning of the course. Prerequisites: Doctoral student and consent of instructor.

ELEN-991. Doctoral Qualifying Examination Credit 3 (0-3)
In this course, doctoral students attend colloquia or seminars. These consist of presentations by doctoral students on dissertation topics and works-in-progress and by guests on important classical, contemporary or research problems in electrical engineering. Prerequisite: Doctoral level standing. This course is for students who are preparing for and taking the written qualifying examination. Prerequisite: Doctoral student and consent of advisor.
ELEN-992. Doctoral Seminar
Credit 1 (0-1)
In this course, doctoral students attend colloquia or seminars. These consist of presentations by doctoral students on dissertation topics and works-in-progress and by guests on important classical, contemporary or research problems in electrical engineering. Prerequisite: Doctoral level standing.

ELEN-993. Doctoral Supervised Teaching
Credit 3 (0-3)
Students will gain teaching experience under the mentorship of faculty who assist the student in planning for the teaching assignment, observe and provide feedback to the student during the teaching assignment, and evaluate the student upon completion of the assignment. Prerequisite: Doctoral level standing.

ELEN-994. Doctoral Supervised Research
Credit 3 (0-3)
This is supervised research under the mentorship of a member of the graduate faculty. It is not intended to serve as the dissertation topic of the doctoral student. Prerequisites: Doctoral level standing and consent of instructor.

ELEN-995. Doctoral Preliminary Examination
Credit 3 (0-3)
This course is for students who are preparing for and taking the written and/oral preliminary examination. Prerequisites: Doctoral student and consent of advisor.

ELEN-997. Doctoral Dissertation
Variable Credit (3-12)
This supervised research serves as the dissertation of the doctoral student. Twelve credits of dissertation are required for graduation. Prerequisites: Doctoral student and consent of advisor.

ELEN-999. Doctoral Dissertation Continuation
Credit 1 (0-1)
The course is for doctoral students who have completed all required course works and all dissertation credits. This optional course assists the student in maintaining full-time enrollment following completion of the Doctoral Dissertation, ELEN997. The course may be taken to allow time for the student to complete the dissertation write-up and to prepare for the dissertation defense. Prerequisite: Completion of all required course works and dissertation credits for Doctoral students and Consent of advisor.

Department: Electrical and Computer Engineering
Chair: Dr. John C. Kelly, Jr.

Ali Abul-Fadl, Associate Professor; B.S., M.S. and Ph.D., University of Idaho
Marwan U. Bikdash, Associate Professor; B.S., American University of Beirut, M.S. and Ph.D., Virginia Tech., Blacksburg, VA
Marwan Bikdash, Professor; B.S., American University of Beirut, M.S. and Ph.D., Virginia Tech
Eric A. Cheek, Sr., Adjunct Associate Professor; B.S., Carnegie Mellon, M.S. and Ph.D., Howard University
Ward J. Collis, Associate Professor; B.S. and M.S., Northwestern University; Ph.D., The Ohio State University
Numan S. Dogan, Professor; B.S., Karadeniz Technical University; M.S., Polytechnic University of New York, Ph.D., University of Michigan
Christopher Doss, Assistant Professor; B.S., University of South Florida, M.S. and Ph.D., North Carolina State University
Corey A. Graves, Assistant Professor; B.S., North Carolina State University, M.S., North Carolina A&T State University, Ph.D., North Carolina State University
Abdollah Homaifar, Professor; B.S. and M.S., State University of New York at Stony Brook, Ph.D., University of Alabama-Tuscaloosa
Shanthi N. Iyer, Professor; B.S. and M.S., Delhi University, Ph.D., Indian Institute of Technology, Delhi
John C. Kelly, Jr., Associate Professor; B.S., Ph.D., University of Delaware
Jung H. Kim, Professor; B.S., Yonsei University, M.S. and Ph.D., North Carolina State University
Gary L. Lebby, Professor; B.S., M.S., University of South Carolina, Ph.D., Clemson University
Clinton B. Lee, Associate Professor; B.S., California Institute of Technology; M.S., North Carolina A&T State University, Ph.D., North Carolina State University
Robert Y. Li, Professor; B.S., Duke University, M.S., Purdue University, Ph.D., University of Kansas
David E. Olson, Associate Professor; B.S., Michigan Tech., Ph.D., University of Utah
David Song, Professor; B.S., ChengDu University of Science and Technology, M.S., Chong Qing University, Ph.D., Tennessee Technological University
Alvernon Walker, Associate Professor; B.S. and M.S., North Carolina A&T State University, Ph.D., North Carolina State University
Chung Yu, Professor; B.S., McGill University; M.S. and Ph.D., The Ohio State University
OBJECTIVES
The Department of Electronics, Computer, and Information Technology (ECIT) prepares students to pursue technical, as well as technical management careers in all employment sectors. The program emphasizes acquisition of sound theoretical studies, as well as intensive “hands-on” experiences in the area of electronics technology. The ECIT Department emphasizes development of “real world” competencies demanded by employers. Students receive thorough grounding in electronics; digital and microprocessor systems; computer technologies, including hardware, software and computer networking; communication systems; and automation and control systems. Additional emphasis is placed on courses in business management, statistics, and project management. Such courses instill an appreciation for the economic and managerial aspects of the business enterprise.

DEGREES OFFERED
Electronics and Computer Technology – Master of Science in Industrial Technology
Information Technology – Master of Science in Industrial Technology

CERTIFICATE IN RADIO FREQUENCY & MICROWAVE WIRELESS COMMUNICATION SYSTEMS
The Department of Department of Electronics, Computer, and Information Technology administers’ the Certificate in Radio Frequency and Microwave Wireless Communication Systems. The certificate program in Radio Frequency and Microwave Wireless Communication Systems requires a total of 15 semester hours to complete. Under the supervision of a certificate faculty advisor, students will take 6 credit hours of required core courses, select 6 credit hours of elective courses and complete a required 3 credit hour independent study focusing on one or more selected wireless topics. The 3 credit hours of independent study would assure that the certificate program maintains a certain level of “hands-on” training by requiring students to complete a project. (Note: Upon departmental certificate advisor approval, and if consistent with the certificate’s intent, substitutions may be allowed for courses not listed below.)

Required Core Courses (6 hours): ECT 650 and 665
Elective Courses (6 hours): ECT 634, 655, 660, 670, 675, 680, and 690
Required Project Course (3 hours): ECT 699

PROGRAM DESCRIPTION
The School of Technology at North Carolina A&T State University offers a Master of Science in Industrial Technology (MSIT) degree. This program is designed to increase students’ understanding of industrial management challenges in an array of technical areas and to explore effective methods for dealing with accelerated technological change.

ADMISSION REQUIREMENTS
The following documents are to be submitted by applicants for admission to the graduate program in the department.

1. Official transcripts of all post secondary-level academic work.
2. Three letters of recommendation from former university professors or supervisors. Note: Two of the three recommendation letters must be from university professors.
3. Applicants from foreign universities must submit an official copy of one of the following tests: Graduate Record Examination (GRE), Miller Analogies Test (MAT), or Graduate Management Admission Test (GMAT) directly to the university.
4. Official copy of TOEFL score (if required) mailed directly to the university.
5. Completed application form and application fee stipulated by School of Graduate Studies at N.C. A&T.
6. A “Statement of Purpose” explaining why you have chosen to pursue a graduate degree and how you feel it will help fulfill your personal career goals.
DEPARTMENT REQUIREMENTS

The Master of Science in Industrial Technology degree program with concentrations in Information Technology or Electronics and Computer Technology offers three options: the thesis option, the project option and the coursework option. The thesis option requires a minimum of 36 semester hours. The project option requires a minimum of 39 semester hours. The coursework option requires a minimum of 42 semester hours. All options required students to pass a written comprehensive examination. In addition, at least fifty percent (50%) of the courses counted towards the Master of Science in Industrial Technology degree must be numbered 700 and above and students must maintain and complete the Master of Science in Industrial Technology program with an overall GPA of 3.0 or better on a scale of 4.0. Up to six semester hours of graduate work may be transferred from another university, provided it was not part of any prior undergraduate degree requirement. The course content must adequately replace current graduate offerings in the student’s curriculum. Transfer credits should be at a level comparable to 600 or 700 level courses at North Carolina A&T.

PROGRAM CURRICULA

<table>
<thead>
<tr>
<th>Program</th>
<th>Option</th>
<th>Core Courses</th>
<th>Management Electives</th>
<th>Additional Statistics Requirement</th>
<th>Technical Electives</th>
<th>Comprehensive Examination Course</th>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics and Computer Technology</td>
<td>Thesis</td>
<td>9 credits</td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td>6 credits</td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td>9 credits</td>
<td></td>
<td></td>
<td></td>
<td>Required</td>
<td>9 credits</td>
</tr>
<tr>
<td></td>
<td>Coursework</td>
<td>9 credits</td>
<td></td>
<td></td>
<td>21 credits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information Technology</td>
<td>Thesis</td>
<td>12 credits</td>
<td>6 credits</td>
<td>3 credits</td>
<td>9 credits</td>
<td>Required</td>
<td>6 credits</td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td>9 credits</td>
<td></td>
<td></td>
<td>9 credits</td>
<td>Required</td>
<td>9 credits</td>
</tr>
<tr>
<td></td>
<td>Coursework</td>
<td>21 credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIT 610</td>
<td>Problem Solving in Industrial Technology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSIT 700</td>
<td>Concepts of Technological Innovations</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSIT 740</td>
<td>Leadership Development Seminar</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSIT 779</td>
<td>Statistical and Research Methods in Industrial Technology I</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Management Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 730</td>
<td>Systems Integration for Telecommunications Managers</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ECT 735</td>
<td>Telecommunications Management Issues</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ECT 785</td>
<td>Electric Energy and Environmental Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ITT 600</td>
<td>Project Management for Information Technology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ITT 620</td>
<td>Telecommunications Management</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 625</td>
<td>Computer Database Management</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 685</td>
<td>Ethical Aspects of Information Technology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ITT 740</td>
<td>Regulatory and Policy Issues for Communication Systems</td>
<td>3 (2-2)</td>
</tr>
</tbody>
</table>

Additional Statistics Requirement

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 701</td>
<td>Analytical Methods for Information Technology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 702</td>
<td>Statistical Methods for Information Technology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>MSIT 780</td>
<td>Statistical and Research Methods in Industrial Technology II</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

OR

Select another statistics course from any department within the School of Technology or, with prior approval, any department at North Carolina A&T State University.
General Technology Specialization:

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 685 Energy, Power and The Environment</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ECT 690 Special Problems in Electronics and Computer Technology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ECT 695 Alternate Energy Systems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ECT 699 Independent Study in Electronics & Computer Technology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ECT 759 Special Topics in Electronics & Computer Technology</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Computer Information Technology Specialization:

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 629 Computer Networking I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 630 Computer Networking II</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ITT 725 Wide Area Networks</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ITT 745 Network Services for the Enterprise</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>BUED624E-Commerce Design and Implementation</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Telecommunications Technology Specialization:

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 601 Wireless Application Protocols I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 610 Digital Communications I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 611 Digital Communications II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 650 Wireless Communication Systems I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 655 Optical Communication Systems I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 660 Satellite and Personal Communication Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 665 Wireless Geo-location Systems I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 670 Communication Circuit Development Laboratory I</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ITT 675 Video Communication Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 680 Radio Wave and Optical Signal Propagation</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 755 Optical Communication Systems II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 760 Wireless Communication Systems II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 765 Wireless Geo-location Systems II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 770 Communication Circuit Development Laboratory II</td>
<td>3 (1-4)</td>
</tr>
</tbody>
</table>

Microelectronics and Materials Technology Specialization:

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 614 Microelectronic Fabrication Technology</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ECT 615 Introduction to Semiconductor Manufacturing Equipment Technology</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ECT 616 Applied Materials, Semiconductor, Superconductivity</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ECT 617 Advanced Solid State Devices</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ECT 714 Advanced VLSI, Film, and IC Process Technology</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Control and Systems Technology Specialization:

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECT 600 Electromechanical Systems Analysis</td>
<td>4 (4-0)</td>
</tr>
<tr>
<td>ECT 634 Electronic Instrumentation for Telemetry Applications</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ECT 635 Analysis and Design of Mechatronic Systems</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ECT 640 Electronic Automated Testing Systems</td>
<td>3 (2-2)</td>
</tr>
</tbody>
</table>
INFORMATION TECHNOLOGY
TECHNICAL ELECTIVES

(Student is to select Technical Elective courses from any department within the School of Technology or, with prior approval, any department at North Carolina A&T State University.)

Computer Technology Specialization

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUED 624</td>
<td>E-Commerce Design and Implementation</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>CUIN 760</td>
<td>Programming in BASIC</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>CUIN 761</td>
<td>Programming in LOGO</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>GCS 632</td>
<td>Graphic Animation</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>INEN 625</td>
<td>Information Systems</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Networking:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 605</td>
<td>Principles of Computer Networking</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 629</td>
<td>Computer Networking I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 630</td>
<td>Computer Networking II</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ITT 635</td>
<td>Administration and Security of Wireless Local Area Networks I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 640</td>
<td>Administration and Security of Wireless Local Area Networks II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 645</td>
<td>Analysis and Troubleshooting of Wireless LAN Systems</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ITT 725</td>
<td>Wide Area Networks</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>ITT 745</td>
<td>Network Services for the Enterprise</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Security:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 615</td>
<td>Networking Security Applications</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>COMP 620</td>
<td>Information, Privacy and Security</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>COMP 627</td>
<td>Wireless Network Security</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Animation/Graphics:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCS 632</td>
<td>Graphic Animation</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 601</td>
<td>Wireless Application Protocols</td>
<td>3 (2-2)</td>
</tr>
</tbody>
</table>

Telecommunications Technology Specialization

Digital:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 610</td>
<td>Digital Communications I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 611</td>
<td>Digital Communications II</td>
<td>3 (2-2)</td>
</tr>
</tbody>
</table>

Wireless:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITT 601</td>
<td>Wireless Application Protocols</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 635</td>
<td>Administration and Security of Wireless Local Area Network I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 640</td>
<td>Administration and Security of Wireless Local Area Network II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 645</td>
<td>Analysis and Troubleshooting of Wireless LAN Systems</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>ITT 650</td>
<td>Wireless Communication Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 655</td>
<td>Optical Communication Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 660</td>
<td>Satellite and Personal Communication Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 665</td>
<td>Wireless Geo-location Systems</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 755</td>
<td>Optical Communication Systems II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 760</td>
<td>Wireless Communication Systems II</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>ITT 765</td>
<td>Wireless Geo-location Systems II</td>
<td>3 (2-2)</td>
</tr>
</tbody>
</table>
Systems:
ITT 670 Communication Circuit Development Laboratory I 3 (1-4)
ITT 675 Video Communication Systems 3 (2-2)
ITT 680 Radio Wave and Optical Signal Propagation 3 (2-2)
ITT 770 Communication Circuit Development Laboratory II 3 (1-4)

Required Comprehensive Examination Course
ECT 788 or ITT 788 Master’s Comprehensive Examination 0 (0-1)

Required Courses

Project Option
MSIT 750 or ECT 750 Internship I or Telecommunications Co-op 3 (3-0)
MSIT 751 Internship II 3 (3-0)
ITT 789 Master’s Degree Project for IT 3 (0-6)

Thesis Option
ITT 791 Master’s Research Thesis for IT I 2 (0-4)
ITT 792 Master’s Research Thesis for IT II 4 (0-8)

COURSE DESCRIPTIONS

MASTER OF SCIENCE IN INDUSTRIAL TECHNOLOGY

MSIT 610. Problem Solving in Manufacturing Technology Credit 3(3-0)
This course teaches fundamental of problem solving as they are applied to a technology environment. Included are analytical as well as creative problem solving techniques. It also explores contemporary issues of innovation in the work place.

MSIT 700. Concepts in World Class Manufacturing Credit 3(3-0)
This course will provide instruction in the concept of World Class Manufacturing. This includes topics such as Just-in-Time (JIT), Total Quality Control (TQC), human resource management; quick changeover, small batch sizes, automation, and time based competitive advantage.

MSIT 740. Leadership Development Seminar Credit 3(3-0)
This is an experiential seminar designed for assessment of the individuals managerial strengths and weaknesses in a manufacturing management position. Current and evolving leadership issues will be discussed and leadership models will be presented. Managerial and leadership issues in high participation work places will be stressed. Students will participate in behavioral simulations and receive psychometric feedback.

MSIT 779. Statistical and Research Methods in Industrial Technology I Credit 3(3-0)
This course introduces the concepts and methods of statistics, which include descriptive statistics, probability theory, sampling distribution, interval estimation, hypothesis testing, statistical inferences, linear and multiple regressions, auto and cross correlation, and nonparametric statistical methods. The course also emphasizes the applications of the statistics to the research and development in industrial technologies, which include research design, data collection and analysis, proposal development and reports. Prerequisite: Graduate Standing.

MSIT 780. Statistical and Research Methods in Industrial Technology II Credit 3(3-0)
This course is a continuation of MSIT 779. This course will cover advanced methods and evaluation of research in Industrial Technology. Emphasis will be placed on theory, planning, research design, data collection, analysis and interpretation of research findings. Critical review and analysis of research literature and preparation of formal research proposals will also be covered. Prerequisite: MSIT 779.
ECT 600. Electromechanical Systems Analysis Credit 4(4-0)
This course deals with the fundamentals of electrical and mechanical dynamical systems. Frequency and time domain analysis techniques are utilized. Electrical and mechanical applications of first and second order linear differential and difference equations are examined through transform techniques. Specialized applications software packages are examined. Prerequisite: Departmental Approval. (F;S;SS)

ECT 614. Microelectronic Fabrication Technology Credit 3(1-4)
This course provides basic lab works on processes as wafer preparation, oxidation, photolithography, doping and deposition used in semiconductor device fabrication. Wafer test equipments, measurement/evaluation techniques, as well as clean room microcontamination control and operation/safety practices are taught through industry field trips and hands-on experiments. Economics and industrial production control issues are examined. Students project on simple mask-making, and fabricating a working transistor - based IC. Prerequisite: ECT 314 or ECT 414. (F;S;SS)

ECT 615. Introduction to Semiconductor Manufacturing Equipment Technology Credit 3(1-4)
This course teaches basic industrial instrumentation (electrical and non-electrical) and automation, as well as associated fundamental concepts used to develop various applications for the semiconductor industry. This course covers various industrial applications including: Vacuum theory and technology, Design and Installation of industrial clean room facilities and equipments for photolithography, CVD/PVD,RF plasma, etc.. Prerequisites: ECT 360, ECT 414. (F;S;SS)

ECT 616. Applied Materials, Semiconductors, and Superconductivity Credit 3(2-2)
This course covers band theory of solids, crystal imperfections; mechanical and thermal properties; microscopic theory of conductivity, polarizability, permeability, including high frequency effect; Elemental and compound semiconductors; Introduction to BCS theory of superconductivity, Josephson tunneling, type II superconductors. Laboratory experiments conducted in the course includes: basic measurements of mechanical, chemical, thermal, electrical and magnetic properties of various electronic materials; fabrication and testing of solar cells, Josephson junction, cryogenics, and vacuum deposition of films. Prerequisites: PHYS 225, 226, 235, 236. (F;S;SS)

ECT 617. Advanced Solid State Devices Credit 3(2-2)
This course covers band model and carrier transport in semiconductors; excess carriers; Interfaces; Physics of the p-n junction and MOS sandwich; IC design at low frequencies for TTL, CMOS, and analog circuitry. The course also includes a broad review of the theory/design/fabrication of monolithic, film, heterojunction, and high frequency semiconductor devices involving quantum dots/wires, mesoscopic devices, Rf Gunn effect, laser sources etc. for integrated optics, nanotechnology, and quantum computing. Students shall use advanced simulation tools for extensive numerical modeling of semiconductor devices and fabrication processes. Prerequisite: ECT 414. (F;S;SS)

ECT 635. Analysis and Design of Mechatronic Systems Credit 3(1-4)
This course deals with the principles of analyzing and designing mechatronics systems. This course includes a review of logic gates, microprocessor architecture, sensors and actuators, A/D and D/A conversion techniques, real-time multi-tasking programming concepts, and direct digital control implementation. The course includes "hands-on" experiences through several laboratory assignments and a final team project. Prerequisites: ECT 201, ECT 312, ECT 313. (F;S;SS)

ECT 640. Electronic Automated Testing Systems Credit 3(2-2)
This course addresses the fundamentals of electronic automated testing systems. Topics include: Production, reliability, and maintenance testing. Various types of Automated Test Equipment (ATE) are addressed, including Built in Test Equipment (BITE) and stand alone systems. Prerequisite: ECT 360. (F;S;SS)

ECT 645. Power Electronics I Credit 3(2-2)
This course addresses the principles and applications of Power Electronics. Topics include power semiconductor switches, phase-controlled rectifiers, DC-to-DC converters, DC-to-DC inverters, motor drives, and power quality. Prerequisites: ECT 314 and ECT 355 or Graduate Standing. (F;S;SS)
ECT 681. Power System Analysis and Control Credit 3(3-0)
This course covers the development of methods for power system analysis and control. An analysis and implementation of systems for steady state, transient, and dynamic conditions will be studied. Digital solutions will be emphasized. Prerequisite: ECT 355. (F;S;SS)

ECT 682. Controls and Applications of Electric Machines Credit 3(3-0)
This course will cover the dynamics and control of different applications of electric machines, such as DC machines, synchronous machines, polyphase induction machines and fractional horsepower machines. This course will investigate the dynamics and control of electric machines driven by electronic power converters. Prerequisite: ECT 355. (F;S;SS)

ECT 683. Electric Power Quality for the Digital Economy Credit 3(3-0)
This course will cover the causes, consequences and solutions of power quality problems that affect the operation of computerized processes and electronic systems. This course will discuss the industry standards, monitoring techniques and economic consideration of power quality issues. Prerequisite: ECT 355. (F;S;SS)

ECT 684. Energy and Environmental Policy Credit 3(3-0)
This course covers the development and current status of energy sources, technologies, consumption patterns, conservation and energy policies. The course will place emphasis on the environmental effects of various choices made at each step of the energy cycle. The course will also examine those choices from technological and socioeconomic points of view. Prerequisite: ECT 355. (F;S;SS)

ECT 685. Energy Power and the Environment Credit 3(3-0)
This course will cover the basic concepts of electric power generation, utilization, and power networks. How total energy consumption and the global economy, affects the environment will be studied. Prerequisite: ECT 355. (F;S;SS)

The purpose of this course is to provide state-of-the-art education in the field of power generation and energy utilization in a deregulated competitive energy services market. Prerequisite: ECT 355. (F;S;SS)

ECT 690. Special Problems in Electronics and Computer Technology Credit 3(0)
This lecture course is used to introduce new topics in the field of electronics and computer technology. The subject matter will be identified prior to the beginning of the course. Prerequisite: Departmental Approval. (F;S;SS)

ECT 695. Alternate Energy Systems Credit 3(3-0)
This course will cover the production of electric energy from alternate energy sources including solar, wind, hydro, biomass, geothermal and ocean. Also, this course will provide the background knowledge of the characteristics of direct conversion, electromechanical conversion, and storage devices used in alternate energy systems. This course will also cover power system issues associated with integration of small scale energy sources into the electricity grid will be fully investigated. Prerequisite: ECT 355 or Departmental Approval. (F;S;SS)

ECT 699. Independent Study in Electronics and Computer Technology Credit 3(3-0)
The student selects a problem (technical or managerial) in consultation with a faculty member in an area related to Electronics Technology or Computer Technology or Telecommunications or Networking. The student along with the faculty member defines the problem's objectives and a solution is pursued. Prerequisite: Graduate Standing. (F;S;SS)

ECT 714. Advanced VLSI, Film, and IC process Technology Credit 3(3-0)
This course introduces computer aided design tools for VLSI; Mask design styles, layout editors, placement/routing, design rule checking, etc.; thick films, advanced PVD/CVD systems; advanced lithographic and IC process techniques. The course also presents application to low frequency, RF, and optical frequency micro- and nano-electronic devices. Prerequisite: ECT 614 or 615. (F;S;SS)
ECT 717. Special Problems in Electronics and Computer Technology Credits 3(0-6)
This course involves the study of a special problem not addressed by an existing course in the department. Typically, a problem is selected from within a new or evolving area in the field. Prerequisite: Approval of Departmental Chairperson. (F;S;SS)

ECT 730. Systems Integration for Telecommunications Managers Credit 3(2-2)
This course delineates methods by which telecommunications systems can be put together to serve the needs of an organization. Students trace how the project manager should operate under constraints of time, cost, performance, competition, and regulation. The course involves extended case studies and group project. Prerequisite: ECT 620. (F;S;SS)

ECT 735. Telecommunication Management Issues Credit 3(2-2)
This course assesses the impact of current and future trends on telecommunication landscape. Topics include technological changes, strategic planning, financial analysis, and the roles of organizational entities such as research and development, production, human resources, and operations. Prerequisite: ECT 620. (F;S;SS)

ECT 740. Regulatory and Policy Issues for Communication Systems Credit 3(2-2)
This course examines current codes and procedures in sampling, engineering standards, testing procedures and guidelines. Data analysis using computer modeling and statistical analysis will be presented. Prerequisite: Departmental Approval. (F;S;SS)

ECT 750. Telecommunications Co-op Credit 3(3-0)
The co-op experience is designed to provide students with an intern experience of working full-time in a technical environment related to electronics and computer technology or telecommunications. For 3 hours of credit, the student must be employed full-time for one semester. Evaluation of student will be based on reports from student’s work supervisor and co-op coordinator. Prerequisite: 15 hours of graduate credit. (F;S;SS)

ECT 759. Special Topics in Electronics and Computer Technology Credit 3(3-0)
This course involves the study of a topic not addressed by an existing course in the department. Typically, a topic is selected from within a new or evolving area in the field. Prerequisite: Departmental Approval. (F;S;SS)

ECT 764. Graduate Independent Study Credits 3(0-6)
This is an independent study in which the graduate student selects a problem (technical or managerial) in consultation with a faculty member in an area related to Electronics Technology or Computer Technology, Telecommunications or Networking. The student along with the faculty member defines the problem's objectives and a solution is pursued. Prerequisite: Graduate Standing. (F;S;SS)

ECT 785. Electric Energy and Environmental Management Credit 3(3-0)
This course will discuss the role of electricity from fossil and nuclear fuels, and renewable resources. It will investigate the impact of high voltage transmission lines as well as the health effects of electricity generation. The course will do an assessment of cogeneration cycles and demand side management. In addition, emission control in the US electric utility industry and an evaluation of uncertainties in quantifying emissions impacts will be studied. Prerequisite: ECT 685 or Departmental Approval. (F;S;SS)

ECT 788. Master's Comprehensive Exam Credit 0(0-1)
This course will aid in the preparation of the graduate student to take the Master of Science in Industrial Technology (MSIT) comprehensive examination. The examination will be administered towards the end of the semester or summer session. This course will be graded on a Pass/Fail basis. The passing of this course is a requirement for graduation from the MSIT program. Prerequisite: 24 credit hours of graduate level courses. (F;S;SS)

ECT 793. Master's Supervised Teaching I Credits 2(0-4)
This course introduces the master's student to laboratory teaching under the supervision of a faculty mentor. Master's students who serve as teaching assistants or as instructors are required to take this course during the first semester they teach. Topics include laboratory planning, writing learning objectives, teaching pedagogy, characteristics of good teachers, and formative and summative assessment techniques. Prerequisite: Consent of Advisor. (F;S;SS)
ECT 794. Master's Supervised Teaching II Credits 2(0-4)
This course continues the student's laboratory teaching experience under the supervision of a faculty mentor. Master's students who serve as teaching assistants or as instructors are required to take this course during the second semester they teach. Topics include laboratory planning, writing learning objectives, teaching pedagogy, characteristics of good teachers, and formative and summative assessment techniques. Prerequisites: Consent of Advisor and ECT 793. (F;S;SS)

ECT 795. Master's Supervised Teaching III Credits 2(0-4)
This course completes the student's laboratory teaching experience under the supervision of a faculty mentor. Master's students who serve as teaching assistants or as instructors are required to take this course during the third semester they teach. Topics include laboratory planning, writing learning objectives, teaching pedagogy, characteristics of good teachers, and formative and summative assessment techniques. Prerequisites: Consent of Advisor and ECT 794. (F;S;SS)

COURSE DESCRIPTIONS

INFORMATION AND TELECOMMUNICATION TECHNOLOGY

UNDERGRADUATE/GRADUATE

ITT 600. Project Management for Information Technology Credit 3(3-0)
This course delves into the unique challenges of managing information technology projects, and offers a road map to success. The course is specifically designed to address the skills inventory and performance outcomes that a student needs to be successful in today's volatile information technology market. Prerequisite: Senior Standing. (F;S;SS)

ITT 601. Wireless Application Protocols Credit 3(2-2)
This course takes you through the basics of Wireless Application Protocols (WAPs), and provides all the information needed to create WAP pages using the Wireless Markup Language (WML). The course will include an introduction to WAP and WML, cards and decks, text formatting elements, navigational commands in WML, and WML variables. Prerequisites: ECT 201 and Junior Standing. (F;S;SS)

ITT 605. Principles of Computer Networking Credit 3(2-2)
This course explores all the hardware and software that drives local and Internet computing. Special emphasis is placed on connectivity and throughput. Prerequisite: ECT 313. (F;S;SS)

ITT 610. Digital Communications I Credit 3(2-2)
The class will investigate digital communications systems for various signals including audio, video and data. Topics include: sampling, quantization, multiplexing, coding, modems, various compression schemes, signal impairments, and various digital modulation schemes. Prerequisite: ECT 350. (F;S;SS)

ITT 611. Digital Communications II Credit 3(2-2)
This course is a continuation of ECT 610. Emphasis is placed on multimedia networks and their supporting platforms. Topics include audio and video standards and compression schemes, cable modems and xDSL schemes. Prerequisite: ECT 610 or Departmental Approval. (F;S;SS)

ITT 615. Networking Security Applications Credit 3(2-2)
This course explores security terms, definitions, concepts, and issues that face industries today. This course also will examine how the concept of security, and being secure, integrates into the overall enterprise mission. The importance of user involvement, security training, ethics, trust, and informed management will be explored. Prerequisite: ITT 605. (F;S;SS)
ITT 620. Telecommunications Management Credit 3(2-2)
This course addresses fundamental principles of telecommunications management, which includes network management and administration, the telecommunications marketplace, and the planning and evaluation of systems. The technology of modern telecommunications systems is also reviewed. Prerequisite: ECT 350. (F;S;SS)

ITT 625. Computer Database Management Credit 3(2-2)
This course focuses exclusively on the design and system issues related to distributed database systems. Students will learn the usage of different design strategies for distributed databases, and they will study query processing techniques and algorithms as well as transaction management and concurrency control concepts used in such systems. Design and implementation issues related to multidatabase systems also will be discussed. In addition, the course focuses on applying the techniques learned in course to commercial database management systems. Prerequisite: ITT 600. (F;S;SS)

ITT 629. Computer Networking I Credit 3(2-2)
This course introduces the student to Local Area Networks (LAN) and introduction to Wide Area Networks (WAN). The course also will provide the basic understanding of network concepts and router programming. Prerequisites: ECT 212 and ECT 213 or ECT 299. (F;S;SS)

ITT 630. Computer Networking II Credit 3(1-4)
The course covers the advanced study of Local Area Networks (LAN) and Wide Area Networks (WAN). The students will develop competences in designing and implementing enterprise-wide networks using routers and switches. Prerequisite: ITT 629. (F;S;SS)

ITT 634. Electronic Instrumentation for Remote Sensing Applications Credit 3(2-2)
This course will provide practical knowledge of the operation of electronics instruments used in the applications of telemetry, remote sensing and detection. Possible electronic systems that will be discussed include RADAR, SONAR, LIDAR, and SODAR. Prerequisite: ECT 350 or Departmental Approval. (F;S;SS)

ITT 635. Administration and Security of Wireless Local Area Network I Credit 3(2-2)
This course will introduce students to wireless network protocols, access modes, portable communications and computing devices, management tools, security solutions, and current industry best practices for managing wireless networks in a secure environment. Case studies will be used throughout the course. Prerequisite: ECT 350. (F;S;SS)

ITT 640. Administration and Security of Wireless Local Area Network II Credit 3(2-2)
A continuation of ITT 635, this course provides students with an in-depth understanding of the security vulnerabilities to wireless networks and their corresponding countermeasures. This course includes training on practical methods for designing, configuring, testing, and maintaining wireless networks appropriate to their organization’s operating requirements. Prerequisite: ITT 635. (F;S;SS)

ITT 645. Analysis and Troubleshooting of Wireless LAN Systems Credit 3(1-4)
This course presents an in-depth understanding of the frame structure of 802.11 frames, frame exchange processes between wireless nodes, analyzing security solutions for both effectiveness and weaknesses, analyzing performance in both pure and mixed-mode environments, and using analyzers for site surveying and intrusion detection. Prerequisite: ITT 635. (F;S;SS)

ITT 646. Wireless Computer Networking I Credit 3(2-2)
This course covers a broad range of wireless computer networking topics including Wi-Fi, Bluetooth, WiMAX, ZigBee, and infrared wireless technology. The course covers wireless technologies and standards, hardware and software installation, radio frequency (RF) fundamentals, and wireless applications support and security. Prerequisite: ECT 350. (F;S;SS)

ITT 650. Wireless Communication Systems I Credit 3(2-2)
This course covers fundamental theory and design of high capacity wireless communication systems. Topics include trunking, propagation effects, frequency reuse, modulation methods, coding and equalization. Emerging cellular and next generation personal communication systems will also be analyzed. Prerequisite: ECT 350. (F;S;SS)
ITT 655. Optical Communication Systems I Credit 3(2-2)
This course covers free space and fiber optic technologies (including lasers, optical amplifiers and optical filters) with applications to high-speed long distance systems, local area networks and communication systems. Prerequisite: ECT 350. (F;S;SS)

ITT 660. Satellite and Personal Communication Systems Credit 3(2-2)
This course covers the theory and practice of satellite communications including: orbits, launchers, spacecraft link budgets, modulation techniques, coding, multiple access techniques, propagation effects and earth terminals. Prerequisite: ECT 350. (F;S;SS)

ITT 665. Wireless Geo-location Systems I Credit 3(2-2)
This course will describe the basic concepts and mechanics of Global Positioning Systems (GPS) and Inertial Navigation Systems (INS). Practical applications of GPS, INS and GPS/INS will be covered. Simple algebraic mathematical calculations will be completed. Prerequisite: ECT 350 or Departmental Approval. (F;S;SS)

ITT 670. Communication Circuit Development Laboratory I Credit 3(1-4)
This course studies advanced methods of analysis of communication circuits including oscillators, radio frequency amplifiers, matching networks, modulators, mixers, and detectors for HF through UHF frequency range using Y- and S- parameter methods. Prerequisite: ECT 350. (F;S;SS)

ITT 675. Video Communication Systems Credit 3(2-2)
This course will study the techniques used to transmit and receive analog and digital video information. This course will also discuss current state of the art video technology such as High Definition Television (HDTV). Prerequisite: ECT 350. (F;S;SS)

ITT 680. Radio Wave and Optical Signal Propagation Credit 3(2-2)
This course models the behavior of unguided electromagnetic and optical waves in the atmosphere, space, urban and indoor environments. The course will also discuss path, frequency and antenna selection for practical radio wave communication systems. Prerequisite: ECT 350. (F;S;SS)

ITT 684. Introduction to Optical Information Processing Credit 3(2-2)
This course covers modern wave optics including the application of Fourier transforms to image analysis, optical spatial filtering, and image processing. Prerequisite: ECT 350 or Permission of Instructor. (F;S;SS)

ITT 685. Ethical Issues in Information Technology Credit 3(3-0)
This course explores issues on the interface between information technology and society, with a special focus on ethical issues. Topics include ethical theory, privacy and security, spam, electronic commerce, the digital divide, open source software, medical informatics, bioinformatics, actor-network theory, ethnomethodology, and some neo-classical economics. Prerequisite: Senior Standing. (F;S;SS)

ITT 688. Microwave and Radar Systems Analysis Credit 3(2-2)
This is an advanced course in microwave and radar systems analysis with application to airborne and navigation systems. Prerequisites: ECT 314, ECT 350. (F;S;SS)

ITT 689. Antenna Systems Technology Credit 3(2-2)
The course provides knowledge in general properties of antennas, the electromagnetic theory behind their operation, and an overview of different antenna systems. Equal weight is placed on the electromagnetic aspects important for antenna design and on systems aspects. Among the systems discussed are radar, cellular, and adaptive antenna systems. Prerequisite: ECT 350. (F;S;SS)

GRADUATE

ITT 700. Project Management for Information Technology Professionals Credit 3(2-2)
This course covers project life cycle, planning templates, project deliverables, project work breakdown structure, estimating resources and task costs, Gantt charts, PERT techniques, project team duties and responsibilities, project team management techniques, and software tools for large projects. Prerequisite: Graduate Standing. (F;S;SS)
ITT 701. Analytical Methods for Information Technology Credit 3(2-2)
This course covers analytical methods that are critical in the selection and performance analysis of information systems and networks, as well as applications. Prerequisite: Graduate Standing. (F;S;SS)

ITT 702. Statistical Methods for Information Technology Credit 3(2-2)
This course covers statistical methods that are critical in the selection and performance analysis of information systems and networks, as well as applications. Prerequisite: Graduate Standing. (F;S;SS)

ITT 703. Technical Research Writing and Communication Skills for Information Technology Credit 3(2-2)
This course covers written and oral communications skills relevant to Information Technology (IT) management topics. It also covers ethical methods of IT research and analysis. Prerequisite: Graduate Standing. (F;S;SS)

ITT 725. Wide Area Networks Credit 3(3-0)
This course will examine Wide Area Networks (WANs) and associated media devices and protocols. Also in this course the design, simulation, and implementation of extranet and internet WAN systems will be developed and tested. Prerequisite: Departmental Approval. (F;S;SS)

ITT 745. Network Services for the Enterprise Credit 3(3-0)
The principles of current wired and wireless services in the telecommunication industry are analyzed for systems and effectiveness. Projected trends and patterns of systems applicable to the industrial communication network will be researched. Prerequisite: Departmental Approval. (F;S;SS)

ITT 746. Telecommunications Network Protocols Credit 3(2-2)
This course covers access control, framing, network protocols, transport protocols, subnetting, port numbers, hubs, switches, routers, and other topics. Prerequisite: Graduate Standing. (F;S;SS)

ITT 747. Secure Wireless and Wired Data Networks Credit 3(2-2)
This course is designed to provide students with the foundation needed to understand the problems of network security and perform a risk analysis to ascertain the threats and costs of an attack. The course will also discuss how to design and implement security strategies to effectively build a defense to minimize the effects of these attacks. Prerequisite: ITT 746. (F;S;SS)

ITT 748. Computer Viruses and Malicious Software Credit 3(2-2)
This course involves the study of malicious software (malware) including computer viruses, worms, and Trojan horses. The course covers the various mechanisms used in the construction of malicious software; existing commercial anti-virus software; preventative and reactive means for dealing with malicious software on workstations, servers, and in networks; training and education of users; and reliable sources to monitor for alerts as well as the prevention of hoaxes. Prerequisite: ITT 746. (F;S;SS)

ITT 749. Principles of System Administration Credit 3(2-2)
This course introduces students to fundamental computer network system administration topics and technologies. Topics covered in the course include ethics and computer network system administration, the law and computer network system administration, and the role of the computer network system administrator in an organization. Prerequisite: ITT 746. (F;S;SS)

ITT 750. Computer System Security Credit 3(2-2)
This course discusses computer network security at the enterprise level. The course covers issues such as liability, exposure, opportunity, and ability to exploit various weaknesses in a networked computer environment. Prerequisite: ITT 746. (F;S;SS)

ITT 751. Introduction to Routing and Switching Credit 3(1-4)
This is an intensive laboratory-based course on the establishment of data streams across the Internet. The focus of the course is on providing Transmission Control Protocol/Internet Protocol (TCP/IP) data streams for higher level computer services to operate over an internetwork. Prerequisite: ITT 630. (F;S;SS)
ITT 752. Advanced Computer Forensics
This course provides students with knowledge and understanding of computer forensics. The course will also provide a theoretical foundation for the techniques and methods needed for the extraction of information from digital devices. Prerequisite: ITT 746. (F;S;SS)

ITT 753. Computer Network Analysis and Performance
This course examines the factors that impact the implementation and performance of computer networks. Students will use simulation tools to design networks based on identified needs, analyze the performance, and investigate the impact of design alternatives. Prerequisite: ITT 746. (F;S;SS)

ITT 754. Advanced Routing Protocols
This course examines the routing protocols in standard use and their application in typical enterprise and large Internet service provider (ISP) environments. It also covers the advantages and disadvantages of each protocol, emerging network technologies, and the protocols needed to facilitate their implementation. Prerequisite: ITT 746. (F;S;SS)

ITT 755. Optical Communication Systems II
This course is a continuation of ECT 655. The course will focus primarily on optical signal processing technologies as they are applied to high-speed communication systems. Prerequisite: ECT 655. (F;S;SS)

ITT 756. Protocol Analysis and Implementation
This course allows students, using a software package that provides them access to the lowest layers of the Open Systems Interconnection (OSI) model, to write programs to interact with established protocols, and to implement their own network protocols. Prerequisites: ITT 746 and Permission of Instructor. (F;S;SS)

ITT 757. Enterprise Security
This course provides students with the advanced concepts needed to establish network security strategies to ensure adequate protection for the corporate environment and provide accessibility for the corporate community. Prerequisite: ITT 746. (F;S;SS)

ITT 760. Wireless Communication Systems II
The course will discuss the transmission of data over mobile links and digital packet data systems. The course will also address security and privacy issues in wireless communication systems. These topics will be introduced via in-depth case studies of wireless standards such as IS-41, GSM, PCS and third generation standards and technologies. Prerequisite: ECT 650 or ECT 660. (F;S;SS)

ITT 765. Wireless Geo-location Systems II
This course will provide integrated practical examples, in-depth case studies and guidelines for building GPS systems. The course will review in-depth implementation techniques for position location systems. Prerequisite: ECT 665. (F;S;SS)

ITT 770. Communication Circuit Development Laboratory II
The course is a continuation of ECT 670. The course will study practical methods of building a complete high frequency or ultra high frequency communication system at the discrete component level. Prerequisite: ECT 670. (F;S;SS)

ITT 787. Master’s Foundation Courses Comprehensive Examination
This course will aid in the preparation of the graduate student to take the Master of Science in Information Technology (MSIT) foundation courses examination. The examination will be administered towards the end of the semester or summer session and will be graded on a Pass/Fail basis. Prerequisites: ITT 700, ITT 701, ITT 702, ITT 703 or Permission of Instructor. (F;S;SS)

ITT 788. Master’s Management and Technical Courses Comprehensive Examination
This course will aid in the preparation of the graduate student to take the Master of Science in Information Technology (MSIT) comprehensive examination. The examination will be administered towards the end of the semester or summer session. This course will be graded on a Pass/Fail basis. Prerequisite: Permission of Instructor. (F;S;SS)
ITT 789. Master’s Research Project for Information Technology Credit 3(0-6)
The emphasis of this course is on the independent investigation of a problem selected in consultation with the student’s graduate committee. A report and successful oral defense before the student’s graduate committee is required. Prerequisite: Permission of Instructor. (F;S;SS)

ITT 791. Master’s Research Thesis for Information Technology I Credit 2(0-4)
The emphasis of this course is on the adequate setup of a thesis problem, collection and use of data, and conclusions. Students must present, in writing, a proposal acceptable to the graduate committee under whose direction the thesis is to be written. Prerequisite: Permission of Instructor. (F;S;SS)

ITT 792. Master’s Research Thesis for Information Technology II Credit 4(0-8)
This course is a continuation of ITT 791. Students will continue to conduct research and writing of the thesis with emphasis on adequate solution of the problem. Students must present in writing a document acceptable to the graduate committee under whose direction the thesis is to be written. The student will be required to give a successful oral presentation. Prerequisite: ITT 791. (F;S;SS)

ITT 999. Continuation of Project/Thesis for Information Technology Credit 1(0-2)
Students who are not enrolled in a course but require the use of university facilities and/or faculty guidance for studies, research, or preparation of a prospectus; project report; thesis; or completing exams must enroll for one credit hour of continuation of project/thesis. Grading of continuation of project/thesis will be either satisfactory (S) or unsatisfactory (U). Prerequisite: Permission of Instructor. (F;S;SS)

ECIT GRADUATE FACULTY

Dr. DeWayne Brown
Associate Professor
B.S., Electrical Engineering, University of South Carolina; M.S., Electrical Engineering, North Carolina A&T State University; Ph.D., Electrical Engineering, Virginia Polytechnic Institute and State University
e-mail: dbrown@ncat.edu

Dr. Chafic Bou-Saba
Adjunct Assistant Professor
B.S., Computer Science, Notre Dame University; M.S., Computer Science, Ph.D., Electrical Engineering, North Carolina A&T State University
e-mail: cbousaba@ncat.edu

Dr. Derrek Dunn
Professor and Chairperson
B.S., Electrical Engineering, B.S., Mathematics, North Carolina A&T State University; M.S., Electrical Engineering, M.S., Mathematics, Ph.D. Electrical Engineering, Virginia Polytechnic Institute and State University
e-mail: dbdunn@ncat.edu

Dr. David Eromon
Assistant Professor
B.S., Electrical Engineering, M.S., Electrical Engineering, Ph.D., Electrical Engineering, University of Benin
e-mail: dieromon@ncat.edu

Dr. Fereshteh Fatehi
Professor
B.S., Electrical Engineering, Shiraz University, Iran; M.S., Electrical Engineering, Ph.D., Electrical Engineering, Montana State University
e-mail: fatehi@ncat.edu
Dr. Walter Gilmore
Assistant Professor
B.S., Electrical Engineering, M.S., Electrical Engineering, Ph.D., Electrical Engineering, North Carolina A&T State University
e-mail: gilmore@ncat.edu

Dr. Claude Hargrove
Assistant Professor
B.S., Computer Engineering, B.S., Electrical Engineering, M.S., Computer Engineering, Ph.D., Biological Engineering, North Carolina State University
e-mail: cmhargro@ncat.edu

Dr. Li-Shiang Tsay
Assistant Professor
B.A., Software and Information Systems, M.S., Computer Science, Ph.D., Information Technology, University of North Carolina at Charlotte
e-mail: litsay@ncat.edu

Dr. Yili Tseng
Adjunct Associate Professor
B.S., Mechanical Engineering, National Taiwan University; M.S., Engineering Science, University of Florida; M.S., Computer Science, Ph.D., Computer Engineering, University of Central Florida
e-mail: yitsen@ncat.edu
OBJECTIVE
The program is designed to prepare men and women for positions in research and consulting in industry, government and service organizations, and teaching and research positions in colleges and universities. Graduates will be able to:

1. Conceive, develop, and conduct original research leading to useful applications in energy and environmental systems.
2. Incorporate into their professional work considerations relating to scientific, technical, managerial, and social aspects of energy and environmental systems.
3. Contribute to societal understanding of global energy and environmental issues including homeland security through development of interdisciplinary educational materials and participation in international exchanges.
4. Demonstrate effective written and oral communication skills related to research issues in energy and environmental systems.

GENERAL PROGRAM ADMISSION REQUIREMENTS
Requirements for admission are:

1. A master’s degree in engineering, agriculture, physical, biological and computational sciences, technology, or business and economics from a college or university recognized by a regional or general accrediting agency with a minimum GPA of 3.25/4.0.
2. GRE score of at least 1100.
3. For applicants whose native language is other than English, Test of English as a Foreign Language (TOEFL) examination score of 550 or higher on the written examination or at least 213 on the computer examination.
4. For international applicants, application for the fall semester completed by April 15 and for the spring semester by October 15.

Students admitted on an unconditional basis are expected to have completed the courses below as part of their prior undergraduate and graduate studies:

- Calculus (minimum of 8 semester hours)
- Differential Equations
- Physics (minimum of 6 semester hours)
- Chemistry (minimum of 3 semester hours)
- Computer Programming (minimum of 3 semester hours)

Co-Major

Students in the Energy & Environmental Ph.D. Program may co-major with other Ph.D. programs offered by NC A&T State University or through the inter-institutional Ph.D. program. This will require the approval of both Ph.D. programs and approval of the student's combined advisory committee. Co-majors must meet all requirements for majors in both programs. Only one degree is awarded and the co-major is noted on the transcript. Co-majors are not permitted between Doctorate-level and lower-level programs.

PROGRAM OPTIONS AND DEGREE REQUIREMENTS
The program requires 51 credit hours beyond the M.S. degree distributed as follows:

- 27 credit hours for course work,
- 3 credit hours for seminars,
Students progress through the program by passing a written qualifying exam over the four core courses and a preliminary exam over the student’s proposed research. As an indicator of their research competency, all students will be required to submit at least two refereed journal articles that have been approved by their dissertation committee before graduation. The program requirements are summarized as follows:

<table>
<thead>
<tr>
<th>Requirement Category</th>
<th>Credits</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td>12</td>
<td>EES 700, EES 730, EES 810*, EES 811 + one from EES 710, EES 720, EES 750</td>
</tr>
<tr>
<td>Written Qualifying Examination</td>
<td>0</td>
<td>EES 991, Covers core courses only</td>
</tr>
<tr>
<td>Elective Track</td>
<td>9</td>
<td>Progressive series of courses at the 600-level (maximum of two courses), 700-level or 800-level, Options are presented below.</td>
</tr>
<tr>
<td>Supervised Teaching/Practicum</td>
<td>3</td>
<td>EES 990, EES 993 or EES 996</td>
</tr>
<tr>
<td>Seminar Requirement</td>
<td>3</td>
<td>EES 992</td>
</tr>
<tr>
<td>Technical Electives</td>
<td>6</td>
<td>Courses at the 700-level or 800-level, Subject to advisor approval **</td>
</tr>
<tr>
<td>Preliminary Examination</td>
<td>3</td>
<td>EES 995</td>
</tr>
<tr>
<td>Dissertation</td>
<td>15</td>
<td>EES 997</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51</td>
<td>****</td>
</tr>
</tbody>
</table>

*EES 810 is a prerequisite for EES 811.

**EES 710 is required as a core course only for students who have not previously had undergraduate or graduate courses in the biological or chemical aspects of energy and environmental science.

Elective Tracks

Atmospheric Sciences (CHEM 711, CHEM 721, CHEM 722, CHEM 723, CHEM 727, CHEM 731, CHEM 732, CHEM 741, CHEM 742, CHEM 743, CHEM 744, CHEM 746, CHEM 748, CHEM 749, CSE 701, CSE 702, CSE 704, CSE 713, EES 785, EES 885, INEN 675, PHYS 735, PHYS 736, PHYS 744, PHYS 745, and other courses subject to advisor approval)

Bio-energy/Bio-materials (BIOL 703, BIOL 704, BIOL 739, BIOL 741, BIOL 749, BIOL 750, BIOL 780, CHEM 756, CSE 701, EES 785, EES 885, HORT 700, PHYS 744, CHEN 760, EES 785, EES 885, INEN 675, MEEN 810, MEEN 820, MEEN 822, MEEN 850, MEEN 860, and other courses subject to advisor approval)

Biotechnology (ANSC 771, BIOL 700, BIOL 703, BIOL 704, BIOL 739, BIOL 741, BIOL 749, BIOL 750, BIOL 780, CHEM 756, CSE 701, EASC 718, EES 785, EES 885, HORT 700, INEN 675, PHYS 744, and other courses subject to advisor approval)

Energy and Environmental Education (CUIN 711, CUIN 721, CUIN 729, CUIN 746, ECT 785, EES 785, EES 885, INEN 675, LEST 800, LEST 802, LEST 810, LEST 811, LEST 820, LEST 850, TECH 715, TECH 762, TECH 763, TECH 764, TECH 765, TECH 766, TECH 767, and other courses subject to advisor approval)

Energy Technologies (CSE 701, ECT 785, EES 785, EES 885, INEN 675, MEEN 838, PHYS 738, PHYS 739, and other courses subject to advisor approval)

Environmental Sciences (ANSC 701, BIOL 700, CHEM 711, CHEM 721, CHEM 722, CHEM 723, CHEM 727, CHEM 731, CHEM 732, CHEM 741, CHEM 742, CHEM 744, CHEM 746, CHEM 748, CHEM 749, CSE 701, CSE 702, EASC 718, EES 785, EES 885, INEN 675, PHYS 736, PHYS 735, PHYS 738, PHYS 739, PHYS 744, PHYS 745, SLSC 710, SLSC 715, SLSC 717, SLSC 727, SLSC 734, and other courses subject to advisor approval)

Fate and Transport of Contaminants (CHEN 710, CHEN 720, CHEN 750, CHEN 760, CIEN 712, CIEN 724, CSE 701, CSE 702, CSE 703, CSE 704, CSE 713, EASC 718, EES 785, EES 885, INEN 675, MATH 712, MATH 721, MATH 723, MATH 731, MATH 733, MATH 752, MATH 765, MATH 781,
MEEN 716, MEEN 752, MEEN 820, MEEN 822, MEEN 850, MEEN 860, SLSC 734, and other courses subject to advisor approval

Information Technology (ANSC 771, BIOL 706, BIOL 755, COMP 710, COMP 712, COMP 713, COMP 732, COMP 740, COMP 755, COMP 770, COMP 785, CSE 701, CSE 702, CSE 703, CSE 704, EES 785, EES 885, ELEN 720, ELEN 821, ELEN 822, INEN 675, MATH 706, MATH 708, MATH 721, MATH 733, MATH 752, MATH 765, and other courses subject to advisor approval)

Materials (CHEN 760, CSE 701, EES 785, ELS 765, ELEN 801, ELEN 802, ELEN 803, ELEN 804, ELEN 805, ELEN 810, INEN 675, MEEN 752, MEEN 810, MEEN 813, MEEN 820, MEEN 822, MEEN 850, MEEN 860, and other courses subject to advisor approval)

Nanotechnology (CSE 701, CSE 711, CSE 712, CSE 713, EES 785, EES 885, INEN 675, PHYS 735, and other courses subject to advisor approval)

Sensors and Controls (CSE 701, EES 785, EES 885, ELEN 762, ELEN 764, ELEN 861, ELEN 862, ELEN 866, ELEN 867, ELEN 868, ELEN 869, ELEN 870, ELEN 871, INEN 675, INEN 851, INEN 852, MATH 752, and other courses subject to advisor approval)

Separations and Reactions (CHEM 749, CHEN 720, CHEN 750, CSE 701, CSE 702, CSE 713, EES 785, EES 885, INEN 675, SLSC 734, and other courses subject to advisor approval)

Systems Management and Economics (ACCT 714, BUAD 712, BUAD 713, BUAD 715, BUAD 716, BUAD 718, CSE 701, CSE 702, ECT 785, EES 785, EES 885, INEN 675, INEN 721, INEN 731, INEN 734, INEN 821, INEN 822, INEN 832, INEN 833, INEN 843, INEN 844, and other courses subject to advisor approval)

Sustainable Technologies for the Built Environment (AREN 702, AREN 742, AREN 762, AREN 765, AREN 770, AREN 772, AREN 778, CSE 701, ECT 785, EES 785, EES 885, INEN 675, and other courses subject to advisor approval)

Transportation and Logistics (CSE 701, EES 785, EES 885, INEN 675, TRAN 701, TRAN 720, TRAN 725, TRAN 727, TRAN 730, and other courses subject to advisor approval)

Ph.D. COMMITTEE AND PLAN OF GRADUATE WORK

Initially, the Director of the program will serve as the academic advisor for all new students entering the program. Each student in the Ph.D. program is expected to select a major advisor by the beginning of the second year with the approval of the Director. The major advisor must hold a tenure or tenure-track, full-time faculty position at the university. However, a co-advisor may have non-tenure-track/adjunct status. The Ph.D. Committee will consist of a minimum of four (4) graduate faculty members with the major advisor as its chairperson. Committee members must be from at least two different departments. Also, members must represent more than one campus School/College. The Ph.D. Committee will be recommended by the major advisor, with input from the student, to the Director of the Ph.D. program, for approval by the Dean of Graduate Studies.

PRELIMINARY EXAMINATION

A student’s written dissertation proposal is submitted to his/her major advisor and the Ph.D. Committee for review. Dissertation proposals are expected to review the state-of-the-art and should clearly indicate that a substantial literature search has been completed. The proposal must be orally defended by the candidate before the Ph.D. Committee, and it must be accepted by the committee. The signature of committee members on the dissertation proposal constitutes approval to proceed with research. After receiving a passing grade in the preliminary exam course, EES 995, the student may register for the Energy & Environmental Ph.D. Dissertation course, EES 997.

ADMISSION TO CANDIDACY

Admission to candidacy for the Ph.D. degree in Energy & Environmental Studies will require compliance with the following:

a) Completion of all core and elective courses approved for the student's program of study,

b) A minimum cumulative GPA of 3.0 or better, and

c) Successful completion of the preliminary examination.

FINAL ORAL EXAMINATION

The final oral examination is scheduled after the dissertation is complete, except for such revisions as may be necessary as a result of the examination, but not earlier than one semester, or its equivalent, after admission to candidacy and not before at least two refereed journal articles have been approved by the Ph.D. Committee and are in
review by the journals. The examination consists of the candidate's defense of methodology used and the conclusions reached in the research, as reported in the dissertation. It is conducted by the student's Ph.D. Committee. Approval by a majority vote of the Ph.D. Committee is required to pass the final oral examination. Approval may be conditioned, however, on the student's meeting specific requirements described by the Ph.D. Committee. Failure of a student to pass the examination terminates his/her work at this institution unless the Ph.D. Committee recommends a reexamination. No reexamination is given until one full semester has elapsed and only one reexamination is permitted.

OTHER INFORMATION
See "Requirements for the Doctor of Philosophy Degree" elsewhere in this catalog for information related to residence requirements and time limit. Additional details of requirements for the program are outlined in the Energy & Environmental Ph.D. Program Student Handbook available from the Graduate School.

List of Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES 700</td>
<td>Introduction to Research Ethics</td>
<td>1</td>
</tr>
<tr>
<td>EES 710</td>
<td>Applied Environmental Chemistry & Microbiology</td>
<td>3</td>
</tr>
<tr>
<td>EES 720</td>
<td>Theory and Practice of Alternative Energy Technologies</td>
<td>3</td>
</tr>
<tr>
<td>EES 730</td>
<td>Research Proposal Writing</td>
<td>3</td>
</tr>
<tr>
<td>EES 750</td>
<td>Atmospheric Physical and Chemical Processes</td>
<td>3</td>
</tr>
<tr>
<td>EES 785</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>EES 810</td>
<td>Theory and Practice of Energy & Environmental Economic Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EES 811</td>
<td>Applications of Energy and Environmental Economic Policy Analysis</td>
<td>3</td>
</tr>
<tr>
<td>EES 885</td>
<td>Special Topics</td>
<td>3</td>
</tr>
</tbody>
</table>

Ph.D. Level Pass/Fail Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES 990</td>
<td>Doctoral Supervised Practicum</td>
<td>3</td>
</tr>
<tr>
<td>EES 991</td>
<td>Doctoral Qualifying Examination</td>
<td>0</td>
</tr>
<tr>
<td>EES 992</td>
<td>Doctoral Seminar</td>
<td>1</td>
</tr>
<tr>
<td>EES 993</td>
<td>Doctoral Supervised Teaching</td>
<td>3</td>
</tr>
<tr>
<td>EES 994</td>
<td>Doctoral Supervised Research</td>
<td>3</td>
</tr>
<tr>
<td>EES 995</td>
<td>Doctoral Preliminary Examination</td>
<td>3</td>
</tr>
<tr>
<td>EES 996</td>
<td>Laboratory Internship</td>
<td>3</td>
</tr>
<tr>
<td>EES 997</td>
<td>Doctoral Dissertation (Variable)</td>
<td>3-9</td>
</tr>
<tr>
<td>EES 999</td>
<td>Continuation of Doctoral Degree</td>
<td>1</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS

Energy & Environmental Course Listings

Ph.D. Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES 700</td>
<td>Introduction to Research Ethics</td>
</tr>
<tr>
<td>EES 710</td>
<td>Applied Environmental Chemistry & Microbiology</td>
</tr>
<tr>
<td>EES 720</td>
<td>Theory and Practice of Alternative Energy Technologies</td>
</tr>
<tr>
<td>EES 730</td>
<td>Research Proposal Writing</td>
</tr>
<tr>
<td>EES 750</td>
<td>Atmospheric Physical and Chemical Processes</td>
</tr>
<tr>
<td>EES 785</td>
<td>Special Topics</td>
</tr>
<tr>
<td>EES 810</td>
<td>Theory and Practice of Energy and Environmental Economic Policy Analysis</td>
</tr>
<tr>
<td>EES 811</td>
<td>Applications of Energy and Environmental Economic Policy Analysis</td>
</tr>
<tr>
<td>EES 885</td>
<td>Special Topics</td>
</tr>
</tbody>
</table>

Ph.D. Level Pass/Fail Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES 990</td>
<td>Doctoral Supervised Practicum</td>
</tr>
<tr>
<td>EES 991</td>
<td>Doctoral Qualifying Examination</td>
</tr>
<tr>
<td>EES 992</td>
<td>Doctoral Seminar</td>
</tr>
<tr>
<td>EES 993</td>
<td>Doctoral Supervised Teaching</td>
</tr>
<tr>
<td>EES 994</td>
<td>Doctoral Supervised Research</td>
</tr>
<tr>
<td>EES 995</td>
<td>Doctoral Preliminary Examination</td>
</tr>
</tbody>
</table>
Energy & Environmental Course Descriptions

EES 700. Introduction to Research Ethics
Credit 1(1-0)
This course will cover the policies regulating research at land grant universities and the ethical principles on which these policies are based. Topics covered include use of humans in research; use of animals in research; research misconduct; authorship and peer review; intellectual property; proper experimental design, data collection, and statistical interpretation; and discipline-specific issues. Prerequisites: Graduate standing and consent of instructor.

EES-710. Applied Environmental Chemistry and Microbiology
Credit 3(2-2)
This course provides an integrated presentation of the biological and chemical aspects of applied environmental science. The laboratory component of the course involves designing experiments and methodologies to evaluate environmental samples. Prerequisites: Graduate standing and consent of instructor.

EES-720. Theory and Practice of Alternative Energy Technologies
Credit 3(2-2)
The course will cover the thermodynamic, mass and energy balance, economic, and environmental considerations of alternative energy technologies. Alternative energy technologies and conventional energy technologies will be compared. Prerequisites: Graduate standing and consent of instructor.

EES 730. Research Proposal Writing
Credit 3(3-0)
This course will guide the student to prepare a written research proposal that contains a thorough literature review, a clear hypothesis about an issue that has not been resolved in the literature, and appropriate methodologies for determining whether or not the hypothesis is correct. Throughout the course, emphasis will be placed on developing critical thinking and technical writing skills. Prerequisites: Graduate standing and consent of instructor.

EES 750. Atmospheric Physical and Chemical Processes
Credit 3(2-2)
This course presents physical chemistry principles related to atmospheric environmental systems, processes, and measurements. Various experimental techniques will be covered including gas chromatography and mass spectrometry, laser spectroscopy, and remote sensing. Prerequisites: Graduate standing and consent of instructor.

EES-785. Special Topics
Credit 3(3-0)
This course allows the introduction of new topics on a trial basis at the master’s level. The topic of the course will be determined prior to registration. Prerequisites: Graduate standing and consent of instructor.

EES-810. Theory and Practice of Energy and Environmental Economic Policy Analysis
Credit 3(3-0)
This course provides the economic framework necessary for analyzing energy and environmental issues. Microeconomic and macroeconomic principles and analytical techniques relevant to the analysis of energy markets and environmental protection are covered. Current energy and environmental regulatory systems at the state, national, and international levels are presented. The need for and effectiveness of various types of regulations related to key energy and environmental issues are discussed for each level. Prerequisites: Doctoral Standing and consent of instructor.

Credit 3(2-2)
This course provides the quantitative economic techniques necessary for analyzing energy and environmental projects and issues. The techniques covered include engineering economics techniques for energy project valuation and econometric techniques used in valuing environmental resources and in forecasting the demand for energy and environmental services. During the first part of the course, empirical case studies will be reviewed; later in the course, students will prepare their own case studies. Prerequisites: EES 810.

EES-885. Doctoral Special Topics
Credit 3(3-0)
This course allows the introduction of new topics on a trial basis at the doctoral level. The topic of the course will be determined prior to registration. Prerequisites: Graduate standing and consent of instructor.
EES-990. Doctoral Supervised Practicum
Credit 3(0-6)
This course represents the supervised internship for the doctoral student that satisfies the 3 credits of required professional development. Oral and written presentations on the experience will be provided to the faculty. Grading is pass/fail evaluation only. Prerequisites: Doctoral standing and consent of instructor.

EES-991. Doctoral Qualifying Examination
Credit 0(0-1)
This course will guide the student to take the qualifying examination. The qualifying examination will consist of a written examination over the Energy & Environmental program core courses. The maximum number of times a student may enroll in the course is two. Prerequisites: EES 700, EES 730, EES 810, EES 811 or Consent of Instructor. Corequisites: EES 811 and EES 820.

EES-992. Doctoral Seminar
Credit 1(1-0)
This course includes presentations delivered by the doctoral students, faculty, and invited speakers on topics related to energy and environmental issues and research. Grading is pass/fail evaluation only. Prerequisite: Doctoral standing.

EES-993. Doctoral Supervised Teaching
Credit 3(1-4)
This course represents the supervised teaching for the doctoral student that satisfies the 3 credits of required professional development. This course introduces the doctoral student to classroom or laboratory teaching under the supervision of a faculty mentor. Doctoral students who serve as teaching assistants or as instructors are required to take this course during the first semester they teach. Grading is pass/fail evaluation only. Prerequisites: Doctoral standing and consent of instructor.

EES-994. Doctoral Supervised Research
Credit 3(3-0)
This course is supervised research under the mentorship of a member of the graduate faculty before a student passes the preliminary exam. This research should lead to the identification of a dissertation topic and written research proposal. Grading is pass/fail evaluation only. Prerequisites: Doctoral standing and consent of instructor.

EES-995. Doctoral Preliminary Examination
Credit 3(3-0)
In this course dissertation advisors will guide their students towards completing the preliminary examination. The preliminary examination will consist of a written proposal and oral defense of the student’s dissertation proposal. Grading is pass/fail evaluation only. Prerequisite: EES 991.

EES 996. Laboratory Internship
Credit 3(0-6)
This course allows a student to explore various research areas first-hand by performing multiple projects in different laboratories under the mentorship of members of the graduate faculty. It should be taken before a student passes the qualifying exam. Grading is pass/fail evaluation only. Prerequisites: Doctoral standing and consent of instructor.

EES-997. Doctoral Dissertation
Variable Credit 3(3-9)
This course represents the supervised research leading to the dissertation for the doctoral student who has passed the preliminary exam. Doctoral dissertation research will be conducted under the supervision of the dissertation committee chairperson and include regular meetings with the dissertation committee to evaluate progress on the dissertation. Grading is pass/fail evaluation only. Prerequisite: EES 995.

EES-999. Continuation of Doctoral Degree
Credit 1(1-0)
This course is a continuation of work toward the doctoral degree. Grading is pass/fail evaluation only. Prerequisites: Doctoral standing.
OBJECTIVE

The objective of the English Department is to provide in-depth training in English Education; English, American, and African American literature; folklore; and language.

DEGREES OFFERED

Master of Arts Degree - English and African American Literature
Master of Science Degree - English Education
Master of Arts in Teaching: English Education (Offered in conjunction with the Department of Curriculum and Instruction, School of Education)

REQUIREMENTS FOR ADMISSION TO THE M.A. PROGRAM IN ENGLISH AND AFRICAN AMERICAN LITERATURE AND THE M.S. PROGRAM IN ENGLISH EDUCATION

All applicants to the M.A. and M.S. programs must have earned a bachelor’s degree from a four-year college. Applicants must also have completed a minimum of twenty-four (24) undergraduate hours in English. The hours must include at least three semester hours of Shakespeare, three of American literature, three of English literature, three of world literature or contemporary literature, three of advanced grammar, and three of advanced composition.

A student who fails to meet these qualifications will be expected to satisfy the requirements by enrolling in undergraduate courses before beginning graduate studies in English. Scores for the GRE general test must be submitted for consideration as a part of the admission process.

Application forms may be obtained from the office of the Graduate School and are also available on-line at the A&T Web-site. Application forms must be completed and returned to the Graduate School Office. Two (2) official transcripts of previous undergraduate or graduate records and three (3) letters of recommendation must be forwarded to the Graduate Office before action can be taken on the application. An applicant may be admitted to the program unconditionally, provisionally, or as a special student.

Unconditional Admission. To qualify for unconditional admission to the programs, an applicant must have earned an overall average of 3.0 on a four-point system (or 2.0 on a three point system) in undergraduate studies.

Provisional Admission. An applicant may be admitted to graduate studies on a provisional basis if (1) the record of undergraduate preparation reveals deficiencies that can be removed near the beginning of graduate study, or if (2) the applicant lacks the required grade point average for unconditional admission. The applicant may then become eligible for unconditional admission by successfully completing the first nine (9) hours of course work with a 3.0 or better average. Students admitted provisionally may also be required to pass examinations to demonstrate their knowledge in certain areas or to take special undergraduate courses to improve their background. A minimum grade point average of 2.6 in undergraduate work is required for provisional admission.

Special Students. Students not seeking the M.A. or M.S. degree may be admitted in order to take courses for self-improvement or for renewal of teaching certificates. If the student subsequently wishes to pursue the M.A. or M.S. program, he or she must request an evaluation of the work. Under no circumstances may the student apply toward a degree program more than twelve (12) hours earned as a special student.
M.A. AND M.S. DEGREE REQUIREMENTS

Total Hours Required. The M.A. and M.S. programs consist of two distinct but similar elements. For the M.A. program, the student may elect to take twenty-seven (27) hours of course work and write a thesis for three (3) hours credit in order to satisfy the thirty-hour minimum requirement. The student may also elect not to write a thesis and take an additional three (3) hours of course work in order to satisfy the thirty-hour minimum requirement. For the M.S. program, the student may elect to take thirty-six (36) hours of course work and write a thesis for three (3) hours credit in order to satisfy the requirement of thirty-nine (39) total hours. The student may also elect not to write a thesis and take an additional three (3) hours of course work in order to satisfy the requirement of thirty-nine (39) hours.

For the M.A program, three specific English courses are required: ENGL 700 – Introduction to Critical Theory; ENGL 753 – Introduction to Graduate Literary Studies; and ENGL 755 - Contemporary Practices in Grammar and Rhetoric. In addition, the student must take twelve (12) hours in African American Literature and nine (9) hours in English and American Literature. (The student who elects the thesis option is required to take only nine (9) hours in African-American Literature.)

For the M.S. program, four specific English courses are required: ENGL 700 – Introduction to Critical Theory; ENGL 730 - Directed Study in English; ENGL 753 – Introduction to Graduate Literary Studies; and ENGL 755 - Contemporary Practices in Grammar and Rhetoric. In addition, five specific courses in Curriculum and Instruction are required: CUIN 619 – Learning Theories; CUIN 711- Research and Inquiry; CUIN 721 - Advanced Methods; CUIN 728 - Technology in K-12 Schools; and CUIN 729 - Diversity Issues in K-12 Schools. In addition, one course is required in each of the following areas: African American literature, American literature, British literature, and one additional course in African American, American, or British literature.

Courses at the 700 level (and ENGL 699) are open only to graduate students. For students in both programs, fifty percent of their course work must be at the 700 level. Therefore, students enrolled in the M.A. program must complete fifteen (15) hours of course work at the 700 level. Students in the M.S. program satisfy this requirement automatically because eight (8) of their required courses, totaling twenty-four (24) hours, are at the 700 level. (Students may apply 700 level professional education courses toward meeting this requirement.) All 600 level courses (except for ENGL 699) are open both to senior undergraduate students and to graduate students.

Grades Required. Students in the programs must maintain at least a 3.0 grade point average in order to satisfy the grade requirements of the program. If a student receives a C or lower in more than two (2) courses, he or she will be dropped from the program.

Amount of Credit Accepted for Transfer. The Graduate School will accept six (6) semester hours of transfer credit from another institution for those students enrolled in degree programs.

Other Requirements (Comprehensive and Thesis Examinations). For the M.A. and M.S. degrees, students must pass a three (3) hour written comprehensive examination administered by the English Department. The comprehensive examination will cover only material to which the student has been exposed in course work at A&T. The comprehensive examination may be taken twice. An additional comprehensive examination in education is required of persons pursuing the M.S. degree. Those students who elect to write a thesis must meet the deadlines projected by the Graduate School in addition to standing for a one-hour oral examination which constitutes a defense of the thesis. The defense may be attempted twice.

MASTER OF ARTS IN TEACHING: ENGLISH EDUCATION REQUIREMENTS

The M.A.T. in English Education program is housed in the School of Education and administered by the Department of English. The M.A. T. is planned for the college graduate in the respective area seeking licensure and graduate studies in teaching grades K-12. The design of the M.A. T. program is two-tiered. The first tier (Phase I) includes all course work for the A licensure, including an internship requirement and passing appropriate exams of Praxis II. The second tier (Phase II) includes a research requirement and other courses completing requirements for the advanced master’s degree and qualifying the candidate for the advanced M licensure. A student must complete all requirements of the first tier before moving to the second.
CAREER OPPORTUNITIES

Both the M.A. and M.S. degrees prepare students to pursue graduate study for the doctorate in English and related fields. The M.S. prepares students to teach on the secondary and college levels. The M.A. degree is designed primarily to prepare students for college teaching and for admission to doctoral programs. The M.A.T. in English Education degree enables prospective teachers the opportunity to develop the knowledge to become excellent teachers and helps meet the current critical teacher shortage.

CURRICULUM GUIDE FOR M.A. DEGREE IN ENGLISH AND AFRICAN AMERICAN LITERATURE

Non-Thesis Option: 30 semester hours required
1. Required: ENGL 700, 753, 755
2. Twelve (12) hrs. from the following: ENGL 631, 650, 652, 653, 654, 656, 658, 660, 744, 760, 762, 764, 766
3. Nine (9) hrs. from the following: ENGL 603, 628, 631, 653, 672, 699, 701, 703, 704, 705, 706, 707, 712, 721, 722, 723, 724, 730, 731, 744

Thesis Option: 30 semester hours required
1. Required: ENGL 700, 753, 755
2. Nine (9) hrs. from the following: ENGL 631, 650, 652, 653, 654, 656, 658, 660, 744, 760, 762, 764, 766
3. Nine (9) hrs. from the following: ENGL 603, 628, 631, 653, 672, 699, 701, 703, 704, 705, 706, 707, 712, 721, 722, 723, 724, 730, 731, 744
4. Thesis Research: ENGL 775 (3 semester hours)

CURRICULUM GUIDE FOR M.S. DEGREE IN ENGLISH EDUCATION

Non-Thesis Option: 39 semester hours required
1. Required: ENGL 700, 730, 753, 755
2. Required: CUIN 619, 711, 721, 728, 729
3. One African American Literature course from the following: ENGL 631, 650, 652, 653, 654, 656, 658, 660, 744, 760, 762, 764, 766
4. One American Literature course from the following: ENGL 628, 631, 653, 672, 721, 722, 723, 724, 744
5. One British Literature course from the following: ENGL 699, 701, 703, 704, 705, 706, 707
6. One additional three-hour course in African-American, American, or British Literature from courses listed in numbers 3, 4, and 5.

Thesis Option: 39 semester hours required
1. Required: ENGL 700, 730, 753, 755
2. Required: CUIN 619, 711, 721, 728, 729
3. One African American Literature course from the following: ENGL 631, 650, 652, 653, 654, 656, 658, 660, 744, 760, 762, 764, 766
4. One American Literature course from the following: ENGL 628, 631, 653, 672, 721, 722, 723, 724, 744
5. One British Literature course from the following: ENGL 699, 701, 703, 704, 705, 706, 707
6. Thesis Research: ENGL 775 (3 semester hours)

CURRICULUM GUIDE FOR M.A.T. IN ENGLISH EDUCATION

Entrance Requirements: BA from accredited institution; undergraduate GPA of 2.5 or better or passing scores on Praxis I; completing of prerequisite course, Computers in Education.

Phase I (Initial Licensure Coursework): 24 hours:
1. ENGL 652/ ENGL 660
2. ENGL 626
3. ENGL 627
4. ENGL 700-level course to be developed
5. ENGL 721
6. ENGL 755
7. ELED 608
8. Pass Praxis II and be licensed; be employed as a teacher for a minimum of one year before continuing in Phase II or complete 12 semester hours of student teaching; submit GRE scores before continuing Phase II.

Phase II (Advanced Studies Coursework): 15 hours:
1. CUIN 619
2. CUIN 653
3. CUIN 711
4. CUIN 728
5. CUIN 729
6. CUIN 788
7. ENGL 788

Total hours for the program: 39 hours.

Courses for Senior Undergraduates and for Graduates

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 600</td>
<td>Language Variations in American English</td>
</tr>
<tr>
<td>ENGL 603</td>
<td>Introduction to Folklore</td>
</tr>
<tr>
<td>ENGL 626</td>
<td>Children’s Literature</td>
</tr>
<tr>
<td>ENGL 627</td>
<td>Literature for Adolescents</td>
</tr>
<tr>
<td>ENGL 628</td>
<td>The American Novel</td>
</tr>
<tr>
<td>ENGL 631</td>
<td>Black Women Writers of Africa and the Diaspora</td>
</tr>
<tr>
<td>ENGL 650</td>
<td>African American Folklore</td>
</tr>
<tr>
<td>ENGL 652</td>
<td>African American Drama</td>
</tr>
<tr>
<td>ENGL 653</td>
<td>Teaching English as a Second Language</td>
</tr>
<tr>
<td>ENGL 654</td>
<td>African American Novel I</td>
</tr>
<tr>
<td>ENGL 656</td>
<td>African American Novel II</td>
</tr>
<tr>
<td>ENGL 658</td>
<td>African American Poetry I</td>
</tr>
<tr>
<td>ENGL 660</td>
<td>African American Poetry II</td>
</tr>
<tr>
<td>ENGL 672</td>
<td>Directed Study in English</td>
</tr>
</tbody>
</table>

Graduate Courses: Open Only to Graduate Students

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 699</td>
<td>Medieval Literature</td>
</tr>
<tr>
<td>ENGL 700</td>
<td>Introduction to Critical Theory</td>
</tr>
<tr>
<td>ENGL 701</td>
<td>English Renaissance Literature</td>
</tr>
<tr>
<td>ENGL 703</td>
<td>Seventeenth-Century English Literature</td>
</tr>
<tr>
<td>ENGL 704</td>
<td>Eighteenth-Century English Literature</td>
</tr>
<tr>
<td>ENGL 705</td>
<td>Romantic Literature</td>
</tr>
<tr>
<td>ENGL 706</td>
<td>Victorian Literature</td>
</tr>
<tr>
<td>ENGL 707</td>
<td>Modern British Fiction</td>
</tr>
<tr>
<td>ENGL 710</td>
<td>Language Arts for Elementary Teachers I</td>
</tr>
<tr>
<td>ENGL 711</td>
<td>Language Arts for Elementary Teachers II</td>
</tr>
<tr>
<td>ENGL 712</td>
<td>Teaching of Freshman Writing</td>
</tr>
<tr>
<td>ENGL 721</td>
<td>Major American Writers I</td>
</tr>
<tr>
<td>ENGL 722</td>
<td>Major American Writers II</td>
</tr>
<tr>
<td>ENGL 723</td>
<td>Modern American Poetry</td>
</tr>
<tr>
<td>ENGL 724</td>
<td>American Multi-Cultural Literature</td>
</tr>
<tr>
<td>ENGL 730</td>
<td>Directed Study in English</td>
</tr>
<tr>
<td>ENGL 731</td>
<td>Technology in Teaching and Research in the Humanities</td>
</tr>
<tr>
<td>ENGL 744</td>
<td>Postcolonial Novel and Theory</td>
</tr>
<tr>
<td>ENGL 753</td>
<td>Introduction to Graduate Literary Studies</td>
</tr>
<tr>
<td>ENGL 754</td>
<td>History and Structure of the English Language</td>
</tr>
<tr>
<td>ENGL 755</td>
<td>Contemporary Practices in Grammar and Rhetoric</td>
</tr>
<tr>
<td>ENGL 760</td>
<td>Non-Fiction by African American Writers</td>
</tr>
</tbody>
</table>
ENGLISH COURSE DESCRIPTIONS
Advanced Undergraduate and Graduate Courses

ENGL 600. Language Variations in American English Credit 3 (3-0)
This course is a survey of regional and social dialects in the United States and a study of their
interrelationship; it provides examples of some of the motivations for dialectical divergences, especially
in the instance of non-standard dialects, and a consideration of functional varieties and social
dialect shifting. Prerequisite: English 310 or graduate standing. (Demand)

ENGL 603. Introduction to Folklore Credit 3(3-0)
This course is a basic introduction to the study and appreciation of folklore. (Cross-listed as
Anthropology 603). (Summer/alternate years)

ENGL 626. Children’s Literature Credit 3 (3-0)
This course is a study of the types of literature designed especially for students in elementary,
intermediate, and middle schools. Prerequisites: English 101, Humanities 200-201. (Fall;
Spring; Summer)

ENGL 627. Literature for Adolescents Credit 3 (3-0)
This course acquaints prospective and in-service teachers with a wide variety of good literature
that is of interest to adolescents. Emphases are on thematic approach to the study of literature, book selection, and
motivation of students to read widely and independently with depth and understanding. Prerequisite: English 101,
200, and 201 or graduate standing. (Fall)

ENGL 628. The American Novel Credit 3 (3-0)
This course is a history of the American novel from Cooper to Faulkner; Melville, Twain,
Howells, James, Dreiser, Lewis, Hawthorne, Faulkner, and Hemingway will be included.
Prerequisite: English 210. (Demand)

ENGL 631. Black Women Writers of Africa and the Diaspora Credit 3 (3-0)
This course examines literary texts by black women globally, including Africa, America, the Caribbean, and Europe,
with a view to understanding, among other things, issues they share in common. (Fall, Spring, Summer)

ENGL 650. African American Folklore Credit 3 (3-0)
This course studies folk tales, ballads, riddles, proverbs, superstitions, and folk songs of
African Americans. Parallels will be drawn between folklore peculiar to African-Americans
and that of Africa, the Caribbean, and other nationalities. (Spring)

ENGL 652. African American Drama Credit 3 (3-0)
This course is a detailed study of the dramatic theory and practice of African American writers
against the backdrop of Continental and American trends. Special attention will be given
to the works of major figures from the Harlem Renaissance to the present. Works by
Bontemps, Cullen, Hughes, Hansberry, Ward, Davis, Baldwin, Baraka (Jones), Gordone, and
Bullins will be included. (Demand)

ENGL 653. Teaching English as a Second Language Credit 3 (3-0)
This course introduces prospective secondary and college teachers of students learning English as a second and/or a
foreign language to various pedagogical approaches. The course will explore theories and practices aimed at second
language acquisition involving reading and writing. (Fall, Spring, Summer)
ENGL 654. African American Novel I
This course is an intensive bibliographical, critical, and interpretative study of novels by major African American writers through 1940. Novelists emphasized include Dunbar, Chesnutt, Toomer, McKay, Larsen, Hurston, Fauset, and Wright. (Fall)

ENGL 656. African American Novel II
This course is an intensive bibliographical, critical, and interpretative study of novels by major African American writers after 1940. Novelists emphasized include Wright, Ellison, Baldwin, Himes, Demby, Williams, Walker, Brooks, Petry, Gaines, and Mayfield. (Spring)

ENGL 658. African American Poetry I
This course is an intensive study of African American poetry from its beginning to 1940, with special attention given to poets of the Harlem Renaissance. Poets to be studied include Terry, Hammon, Wheatley, A.A. Whitman, Horton, Braithwaite, J.W. Johnson, Horne, Fenton Johnson, Georgia Douglas Johnson, McKay, Cullen, Cuney, and Hughes. (Demand)

ENGL 660. African American Poetry II
This course is an intensive study of African American poetry from 1940 to the present with considerable attention given to the revolutionary poets of the sixties and seventies. Poets to be studied include Hughes, Walker, F.M. Davis, Brooks, Brown, Hayden, Tolson, Lee, Reed, Giovanni, Angelou, Jeffers, Sanchez, Redmond, Fabio, Fields, and Baraka. (Fall)

ENGL 672. Directed Study in English
This course provides an opportunity for students to pursue independent and in-depth study in literature, linguistics, or professional writing. Work done in literature for this course may serve as groundwork for students pursuing the thesis option. Prerequisite: Advanced undergraduate or graduate standing and prior consultation with departmental faculty.

Graduate Students Only

ENGL 699. Medieval Literature
This course is a study of the major English writers of the Middle Ages, including Chaucer, Malory, Langland, the “Gawain” poet, the “Everyman” playwright, and various other writers in the dramatic, religious, lyric, and ballad traditions. (Fall/alternate years)

ENGL 700. Introduction to Critical Theory
This course outlines and critiques major movements in contemporary literary theory, including, for example, Marxism, feminism, and various poststructuralisms. (Fall)

ENGL 701. English Renaissance Literature
This course is a study of major prose and poetry, both dramatic and non-dramatic, of the English Renaissance. Writers to be studied include More, Sidney, Spenser, Marlowe, and Shakespeare. (Fall/alternate years)

ENGL 703. Seventeenth-Century English Literature
This course is a study of major prose and poetry, both dramatic and non-dramatic, of Seventeenth-Century English. Writers to be studied include Jonson, Donne, Bacon, Webster, Marvell, Milton, and Dryden. (Summer/alternate years)

ENGL 704. Eighteenth-Century English Literature
This course is a study of the major prose and poetry writers of the Eighteenth Century in relation to the cultural and literary trends. Dryden, Defoe, Swift, Fielding, Addison, Pope, Johnson, and Blake will be included. (Demand)

ENGL 705. Romantic Literature
This course is a study of English Romantic writers. Blake, Wordsworth, Coleridge, Keats, Shelley, Byron, Hazlitt, DeQuincey, and Lamb will be included. (Spring/alternate years)
ENGL 706. Victorian Literature
This course is a study of Nineteenth-Century Victorian writing, including poetry, fiction, and non-fictional prose. Writers to be considered will include Tennyson, Browning, Arnold, the Rossettis, Carlyle, Mill, Dickens, the Brontes, Eliot, Thackray, and Hardy. (Spring/alternate years)

ENGL 707. Modern British Fiction
This course is a study of English and Irish writers from the beginning of the Twentieth Century to the present. Authors to be considered include Joyce, Woolf, Forster, Lawrence, Mansfield, and Lessing. (Summer/alternate years)

ENGL 710. Language Arts for Elementary Teachers I
This course is designed to provide elementary school teachers with an opportunity to discuss problems related to the language arts taught in the elementary school. (Not accepted for credit towards concentration in English.) (Summer/alternate years)

ENGL 711. Language Arts for Elementary Teachers II
This course is a continuation of the study of relevant language situations with which elementary teachers should be concerned. Emphases will be placed on strategies for guiding pupils to explore the nature and structure of language and for teaching essential language skills. (Not accepted for credit towards concentration in English.) (Summer/alternate years)

ENGL 712. Teaching of Freshman Writing
This course is required of all English graduate teaching assistants (GTAs), and is designed solely to provide an academic setting for the theoretical and practical components of teaching English 100. GTAs will discuss and implement writing assignments, exercises in literature and grammar, and the methods of leading class discussion. (Fall)

ENGL 721. Major American Writers I
This course is an intensive bibliographical, critical, and interpretive study of works by major American writers through 1900. Writers to be discussed will vary and will include Emerson, Fuller, Thoreau, Poe, Hawthorne, Clemens, Whitman, Melville, Dickinson, and James, among several others. (Fall)

ENGL 722. Major American Writers II
This course is an intensive bibliographical, critical, and interpretive study of works by major American writers from 1900 to the present. Writers to be discussed will vary and will include Stein, Eliot, Hemingway, Faulkner, Toomer, Hurston, Frost, Oates, and Morrison, among several others. (Spring)

ENGL 723. Modern American Poetry
This course is an intensive study of Twentieth-Century American poetry. Special attention will be given to major movements, definitions of modernism, and individual poets. Authors to be considered include Frost, Eliot, Moore, Hughes, Williams, Brooks, and Dove. (Summer)

ENGL 724. American Multi-Cultural Literature
This course will examine the critical and historical perspectives of selected works by Native American, Asian American, and Hispanic (including American Chicano, Latino, and Puerto Rican) authors. Writers to be studied include Black Elk, Paula Gunn Allen, Joy Harjo, Louise Erdrich, N. Scott Momaday, Simon Ortiz, Leslie Marmon Silko, James Welch, Maxine Hong Kingston, Frank Chin, Amy Tan, Jose Garcia Villa, Rudolfo Anaya, Pat Mora, Tomas Rivera, Gary Soto, Victor Cruz Hernandez, and Sandra Cisneros. (Summer)

ENGL 730. Directed Study in English
This course provides an opportunity for students to pursue in-depth study in literary criticism, literature, linguistics, or writing. Also, work done in this course may serve as groundwork for students pursuing the thesis option, developing a portfolio, or acquiring practicum experience. Repeatable once upon approval of departmental chair and/or coordinator of graduate studies in English. Prerequisite: approval of, and prior consultation with, instructor. (Fall, Spring, Summer)
ENGL 731. Technology in Teaching and Research in the Humanities Credit 3 (3-0)
This course offers students the opportunity to develop and apply advanced technology in the areas of teaching and/or research in the humanities. Applications include the following: virtual reality, hypertext, hypermedia, distance learning, web-enhanced teaching, advanced research techniques, and hypertext bibliographies. Prerequisite: approval of instructor. (Spring)

ENGL 744. Postcolonial Novel and Theory Credit 3 (3-0)
This course examines postcolonial theory and its application to both postcolonial (including the Caribbean, Latin America, Africa, the Middle East, the Balkans, the former republics of the Soviet Union, India, Asia, and Oceania) novels and contemporary society, whether local, national, or global. (Fall, Spring, Summer)

ENGL 753. Introduction to Graduate Literary Studies Credit 3 (3-0)
This course introduces the central research practices of contemporary literary scholarship and their purposes and helps students to design individual research projects and acquire the tools necessary to bring them to fruition. (Fall)

ENGL 754. History and Structure of the English Language Credit 3 (3-0)
This course is a study of the changes in the English language — syntax, vocabulary, spelling, pronunciation, and usage — from the Fourteenth century through the Twentieth century. (Demand)

ENGL 755. Contemporary Practices in Grammar and Rhetoric Credit 3 (3-0)
This course is designed to provide secondary teachers of English with experience in linguistics applied to modern grammar and composition. (Spring)

ENGL 760. Non-Fiction by African American Writers Credit 3 (3-0)
This course studies non-fiction by African American writers, including slave narratives, autobiographies, biographies, essays, letters, and orations. (Demand)

ENGL 762. Short Fiction by African American Writers Credit 3 (3-0)
This course is an intensive examination of short fiction by African American writers. Among those included are Chesnutt, Dunbar, Toomer, Hurston, McKay, Hughes, Bontemps, Wright, Clarke, Ellison, Fair, Alice Walker, Ron Milner, Julia Fields, Jean W. Smith, Petry, Baldwin, Kelley, and Baraka. (Spring/alternate years)

ENGL 764. African American Aesthetics Credit 3 (3-0)
This course defines those qualities of African American literature that distinguish it from traditional American literature through an analysis of theme, form, and technique as they appear in a representative sample of works by African-American writers. (Demand)

ENGL 766. Seminar in African American Literature and Language Credit 3 (3-0)
This is a topics course that will vary; focus will be on prominent themes and/or subjects treated by African American writers from the beginning to the present. An attempt will be made to characterize systematically the idiom (modes of expression, style) of African-American writers. (Demand)

ENGL 770. Seminar Credit 3 (3-0)
This course provides an opportunity for presentation and discussion of a thesis, as well as selected library or original research projects from non-thesis candidates. Prerequisite: 15 hours of graduate-level courses in English. (Demand)

ENGL 775. Thesis Research (Demand) Credit 3 (3-0)
Graduate Faculty

Department: English
Chair: Dr Chimalum Nwankwo

Ahmad, Anjail R. B.A., Agnes Scott College; M.A., New York University; Ph.D., University of Missouri-Columbia; Assistant Professor
Bonner, Patricia E. B.A., University of Alabama; M.A., Atlanta University; Ph.D., University of South Florida; Associate Professor
Brown, Jane G. B.A., Converse College; M.A., Vanderbilt University; M.A. and Ph.D., University of Dallas; Associate Professor
Garren, Samuel B. B.A., Davidson College; M.A., Ph.D., Louisiana State University; Professor
Greene, Michael. B.A., Duke University; M.A., Ph.D., Indiana University; Professor
Kamara, Gibreel M. B.A., M.A., North Carolina A&T State University; Ed.D., Temple University; Associate Professor
Kulii, Elon. B.A., Winston-Salem State University; M.S., North Carolina A&T State University; Ph.D., Indiana University; Professor
Levine, Robert T. B.A., Queens College of the City University of New York; M.A. and Ph.D., Cornell University; Professor
Levy, Michele F. B.A., George Washington University; M.A. and Ph.D., University of North Carolina at Chapel Hill; Professor
Meyerson, Gregory D. B.A., Miami University of Ohio; M.A. and Ph.D., Northwestern University; Assistant Professor
Nwankwo, Chimalum. B.A., University of Nigeria, Nsukka; M.F.A., M.A., and Ph.D., University of Texas at Austin; Professor and Chair
Parker, Jeffrey D. B.A., University of North Carolina at Greensboro; M.A., North Carolina A&T State University; Ph.D., University of South Carolina; Associate Professor
OBJECTIVES

The objectives of the graduate program in Food and Nutritional Sciences are:
1. To develop the basic knowledge and skills necessary to undertake research in the Food and Nutritional Sciences and other related areas.
2. To develop competencies to work as food and nutrition specialists in education, or with other community nutrition agencies and food industries.
3. To obtain theoretical and experimental competencies necessary to pursue additional graduate studies or obtain professional degrees.

The objectives of the Master of Arts in Teaching Degree in Child Development, Early Education and Family Studies – Birth – Kindergarten are to prepare students:
1. To master the knowledge, skills and dispositions required for the Birth – Kindergarten license.
2. To analyze theoretical perspectives and current research, to conduct research and to apply this knowledge toward reflective, evidence-based practice in teaching and working with families.
3. To assume diverse professional and leadership roles in a wide variety of educational and community settings.

DEGREE OFFERED

Master of Science - Food and Nutritional Sciences
Master of Arts in Teaching – Child Development, Early Education and Family Studies – Birth – Kindergarten

GENERAL PROGRAM REQUIREMENTS

For admission, students in the graduate program in Food and Nutritional Sciences must have an earned baccalaureate degree in Food and Nutrition from an accredited undergraduate institution and have an overall grade point average of 2.6. Non-food and nutrition majors (i.e., Chemistry, Biochemistry, Biology, Animal and Plant Sciences, Physiology, or other related science disciplines) are encouraged to apply but students are required to clear the course deficiencies after enrollment. A minimum of six (6) hours or more of Food and Nutritional Sciences courses are required to address these deficiencies. The Test of English as a Foreign Language (TOEFL) is required for foreign students. The Graduate Record Examination (GRE) is not required for admission into the program at this time.

The Masters program in Food and Nutritional Sciences offer students two (2) options: thesis and non-thesis. The thesis option requires that each student submit a thesis based on research related to Nutrition or Food Science. The non-thesis option requires students to take in addition to the curriculum a minimum of six (6) extra credit hours. These credit hours must be at the graduate level.

For admission to Phase I of the Masters of Arts in Teaching (M.A.T.) program in Child Development, Early Education and Family Studies – Birth – Kindergarten students must have an earned baccalaureate degree from an accredited institution, completed any required prerequisite courses and have minimum undergraduate grade point average of 2.5 or passing scores on Praxis 1. For admission to Phase II of the M.A.T. program students must have a minimum grade point average of 3.0 in Phase I coursework, passing scores on Praxis II and a Birth – Kindergarten Class A license, documentation of one year of successful teaching or a six (6) credit hour student teaching experience with children and families, satisfactory recommendations from the candidate’s principal, if teaching, or from three persons knowledgeable of his/her interactions with children and families, completion of the Graduate Record Exam (GRE) or Miller Analogies Test (MAT), and applicant’s Essay of Purpose.
OTHER REQUIREMENTS

All applicants are required to take a Qualifying Examination in Food and Nutritional Sciences or take two basic Food and Nutritional Sciences courses. The test must be taken preferably prior to the registration for graduate courses or by the end of the first semester of the graduate work. The student may take one basic Food Science course and one Nutrition course each, and make a grade of B or better. Admission to candidacy for the M.S. in Food and Nutritional Sciences requires the satisfactory completion of the Qualifying Examination, a minimum overall average of 3.0 in at least nine (9) semester hours of graduate work at NCA&TSU, and removal of all deficiencies in undergraduate preparation.

A final Comprehensive Examination in Food and Nutritional Sciences can be taken only if a student has completed all course work and maintained a 3.0 grade point average in graduate courses at the 600 level or above. At least fifty percent of the courses counted in the work towards the Master’s degree must be designated for graduate students only.

The student must complete the Departmental Qualifying Examination, the Comprehensive Examination, satisfactory presentation and defense of the thesis (thesis option) and submission to the graduate office or completion of practicum (non-thesis) in order to be approved for graduation.

All students completing the M.A.T. program in Child Development, Early Education and Family Studies – Birth – Kindergarten are required to take a comprehensive examination and complete a Master’s Comprehensive Portfolio and/or complete the Master’s Action Research Project.

CAREER OPPORTUNITIES

A degree in this area prepares students to enter careers in such areas as research, quality control and management for food industries, local, state and federal agencies. Other career options may include college and junior college teaching, community nutrition, dietetics and extension service.

The M.A.T. program in Child Development, Early Education and Family Studies – Birth – Kindergarten prepares students to become teachers, including teachers with provisional (lateral entry) or emergency licensure, teachers seeking licensure in the field, and/or those individuals changing careers. Completion of Phase I qualifies the student for “A” licensure and completion of Phase II qualifies the student for the advanced “M” license. Additionally, graduates are prepared to take leadership roles in school systems or community agencies that are engaged in teaching young children and promoting optimal family development.

A. Thesis Option - Suggested Curriculum Guide

Requirements:
1. Twelve-Thirteen (12-13) semester hours of Food and Nutrition courses.
 FCS 730 - Nutrition and Disease 3 credits
 FCS 735 - Experimental Foods (4 credits) OR
 FCS 631 - Food Chemistry (3 credits) 3-4 credits
 FCS 736 - Research Methods Food and Nutrition 4 credits
 FCS 744 - Seminar in Food and Nutrition 2 credits
 FCS 788 - Comprehensive Examination 0 credit
2. In addition to the above core courses three (3) hours of 3 credits statistics numbered 600 or above are required.
3. Six (6) semester hours in Food and Nutrition and related 6 credits areas are required.
4. Three (3) semester hours of advanced Biochemistry or 3 credits equivalent numbered 600 or above.
5. Three (3) semester hours of suggested electives 3 credits
6. FCS 739 - Thesis Research 3 credits
 30-31 credit hours

B. Non-Thesis Option - Suggested Curriculum Guide

Requirements:
1. Twelve-Thirteen (12-13) semester hours of Food and Nutrition courses.
 FCS 730 - Nutrition and Disease 3 credits
 FCS 735 - Experimental Foods (4 credits) OR
 FCS 631 - Food Chemistry (3 credits) 3-4 credits
2. In addition to the above core courses three (3) hours of 3 credits statistics numbered 600 or above are required.
3. Twelve (12) semester hours in Food and Nutrition and 12 credits related areas are required.
4. Three (3) semester hours of advanced Biochemistry 3 credits numbered 600 or above or equivalent.
5. Three (3) semester hours of suggested electives. 3 credits

COURSES - FOOD AND NUTRITIONAL SCIENCES AND RELATED AREAS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS 601</td>
<td>Quantity Food</td>
</tr>
<tr>
<td>FCS 630</td>
<td>Advanced Nutrition</td>
</tr>
<tr>
<td>FCS 631</td>
<td>Food Chemistry</td>
</tr>
<tr>
<td>FCS 632</td>
<td>Maternal and Lifespan Nutrition</td>
</tr>
<tr>
<td>FCS 633</td>
<td>Food Analysis</td>
</tr>
<tr>
<td>FCS 635</td>
<td>Introduction to Research Methods in Food and Nutrition</td>
</tr>
<tr>
<td>FCS 636</td>
<td>Food Promotion</td>
</tr>
<tr>
<td>FCS 637</td>
<td>Special Problem in Food, Nutrition or Food Science</td>
</tr>
<tr>
<td>FCS 638</td>
<td>Sensory Evaluation</td>
</tr>
<tr>
<td>FCS 640</td>
<td>Geriatric Nutrition</td>
</tr>
<tr>
<td>FCS 641</td>
<td>Current Trends in Food Service</td>
</tr>
<tr>
<td>FCS 643</td>
<td>Food Preservation</td>
</tr>
<tr>
<td>FCS 648</td>
<td>Community Nutrition</td>
</tr>
<tr>
<td>FCS 650</td>
<td>International Nutrition</td>
</tr>
<tr>
<td>FCS 651</td>
<td>Food Safety and Sanitation</td>
</tr>
<tr>
<td>FCS 656</td>
<td>Nutritional Therapy I</td>
</tr>
<tr>
<td>FCS 657</td>
<td>Nutritional Therapy II</td>
</tr>
<tr>
<td>FCS 653</td>
<td>Food Biotechnology</td>
</tr>
<tr>
<td>FCS 679</td>
<td>Nutrition Education</td>
</tr>
<tr>
<td>FCS 715</td>
<td>Trace Elements and Nutrition</td>
</tr>
<tr>
<td>FCS 730</td>
<td>Nutrition and Disease</td>
</tr>
<tr>
<td>FCS 733</td>
<td>Nutrition during the Growth and Development</td>
</tr>
<tr>
<td>FCS 734</td>
<td>Nutrition Education</td>
</tr>
<tr>
<td>FCS 735</td>
<td>Experimental Foods</td>
</tr>
<tr>
<td>FCS 736</td>
<td>Research Methods in Food and Nutrition</td>
</tr>
<tr>
<td>FCS 739</td>
<td>Thesis Research</td>
</tr>
<tr>
<td>FCS 740</td>
<td>Community Nutrition</td>
</tr>
<tr>
<td>FCS 742</td>
<td>Food Culture: Nutrition Anthropology</td>
</tr>
<tr>
<td>FCS 744</td>
<td>Seminar in Food and Nutrition</td>
</tr>
<tr>
<td>FCS 745</td>
<td>Practicum in Food and Nutrition</td>
</tr>
</tbody>
</table>

Suggested Elective Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS 606</td>
<td>Cooperative Extension</td>
</tr>
<tr>
<td>FCS 607</td>
<td>Cooperative Extension Field Experience</td>
</tr>
<tr>
<td>FCS 608</td>
<td>Teaching Adults and Youth in Out-of-School Settings</td>
</tr>
<tr>
<td>ANSC 615</td>
<td>Selection of Meat and Meat Products</td>
</tr>
<tr>
<td>ANSC 617</td>
<td>Physiology of Reproduction of Farm Animals</td>
</tr>
<tr>
<td>BIOL 630</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>CHEM 651</td>
<td>General Biochemistry</td>
</tr>
<tr>
<td>COMP 600</td>
<td>Special Topics in Computer Science</td>
</tr>
<tr>
<td>CUIN 617</td>
<td>Computer in Education</td>
</tr>
<tr>
<td>SOCI 617</td>
<td>Research Methods II</td>
</tr>
<tr>
<td>CUIN 776</td>
<td>Independent Reading in Education II</td>
</tr>
<tr>
<td>CUIN 777</td>
<td>Independent Reading in Education III</td>
</tr>
<tr>
<td>CUIN-S- 790</td>
<td>Seminar in Education Problem</td>
</tr>
</tbody>
</table>
COURSES WITH DESCRIPTION IN FAMILY AND CONSUMER SCIENCES

Food and Nutritional Sciences

Advanced Undergraduate and Graduate Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit (L-T-P)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS-601</td>
<td>Quantity Foods</td>
<td>4 (1-6)</td>
<td>The application of principles of cookery to the preparation and service of food for group feeding with emphasis on menu planning, work schedules, cost and portion control, distribution and service are implemented in a laboratory setting. Prerequisites: FCS-130, 246, 344, AGEC-446.</td>
</tr>
<tr>
<td>FCS-630</td>
<td>Advanced Nutrition</td>
<td>3 (3-0)</td>
<td>Intermediate metabolism and interrelationships of organic and inorganic food nutrients in human biochemical functions. Prerequisites: FCS-337 and CHEM-251, 252 or equivalent.</td>
</tr>
<tr>
<td>FCS-631</td>
<td>Food Chemistry</td>
<td>3 (2-2)</td>
<td>A study of the chemical, biochemical and physical properties of components of basic raw foods and behavior of the components including non-microbial changes during processing and storage. Prerequisites: FCS-236, CHEM-106, 107 and 251.</td>
</tr>
<tr>
<td>FCS-632</td>
<td>Maternal and Lifespan Nutrition</td>
<td>3 (3-0)</td>
<td>This course emphasizes the energy and nutrient requirements and feeding practices for stages of the lifespan. The influence of nutrition on growth and development is discussed. The nutritional quality of food, physiological development, growth assessment, dietary evaluation and nutrition assessments for various stages of the lifespan are covered. Prerequisites: FCS-332, 337 or instructor’s permission.</td>
</tr>
<tr>
<td>FCS-633</td>
<td>Food Analysis</td>
<td>3 (1-4)</td>
<td>Fundamental chemical, physical and sensory aspects of food composition as they relate to physical properties, acceptability and nutritional values of foods. Prerequisites: CHEM-102, 112, FCS-236.</td>
</tr>
<tr>
<td>FCS-635</td>
<td>Introduction to Research Methods in Food and Nutrition</td>
<td>3 (0-6)</td>
<td>Laboratory experiences in the use of methods applicable to food and nutrition research. Prerequisite: Consent of the instructor.</td>
</tr>
<tr>
<td>FCS-636</td>
<td>Food Product Development</td>
<td>4 (1-6)</td>
<td>A course which provides experiences in the development and testing of recipes. Opportunities will be provided for demonstrations, writing and photography with selected business.</td>
</tr>
<tr>
<td>FCS-637</td>
<td>Special Problems in Food and Nutrition</td>
<td>3 (0-6)</td>
<td>Independent study and/or experiences in food and/or nutrition. Prerequisite: Admission by instructor.</td>
</tr>
<tr>
<td>FCS-638</td>
<td>Sensory Evaluation</td>
<td>3 (2-2)</td>
<td>A study of the color, flavor, aroma and texture of foods by the use of sensory evaluation methods. Prerequisites: FCS-236, FCS-337.</td>
</tr>
<tr>
<td>FCS-640</td>
<td>Geriatric Nutrition</td>
<td>3 (3-0)</td>
<td>Multidisciplinary approaches to geriatric foods, nutrition and health problems. Evaluation of nutritional status and nutrition care of the elderly is emphasized. Field experience: nursing home and other community agencies. Prerequisite: FCS-337 or 439.</td>
</tr>
<tr>
<td>FCS-641</td>
<td>Current Trends in Food Science</td>
<td>3 (3-0)</td>
<td>Recent developments in food science and their implications for food scientists, nutritionists, dietitians and other professionals in the food industry and related professions.</td>
</tr>
</tbody>
</table>
FCS-643. Food Preservation Credit 3 (2-2)
A study of current methods of preserving foods - canning, freezing, dehydration, radiation, and fermentation. Prerequisite: FCS-236 or equivalent.

FCS-645. Special Problems in Food Administration Credit 2 (0-4)
Individual work on special problems in food administration.

FCS-648. Community Nutrition Credit 3 (3-0)
This course provides an introduction and review of major communication and education skills that dietitians and nutritionists use in techniques of interviewing and counseling in community nutrition programs, and materials, methods and goals in planning, assessing, organizing and marketing nutrition for health promotion and preventing diseases. Evaluation of food and nutrition programs at State and Federal level are included. Prerequisite: FCS-679.

FCS-650. International Nutrition Credit 3 (3-0)
An ecological approach to the study of hunger and malnutrition in technologically developed and developing countries. Focus is on integrated intervention programs, projects, and problems. Opportunities to participate in national and international internships through cooperative arrangements are provided.

FCS-651. Food Safety and Sanitation Credit 3 (3-0)
This course covers practices and procedures for hygienic food handling, processing, sanitation, food safety laws, and implementation of Hazard Analysis Critical Control point (HACCP) system in food processing and food service operations. Emphasis is placed on sanitation management, hazards, standards, and corrective actions for food service operations that are critical control points for food safety. Practical measures for prevention of food borne diseases and the effects of microorganisms, toxins, foreign objectives and physical damage on the safety and quality of foods are discussed. Prerequisite: BIOL-220.

FCS-652. Diet Therapy Credit 4 (3-2)
This course is a study of the principles of nutritional sciences in the treatment and management of nutrition related diseases. Course content includes etiology, prevalence, pathophysiology, biochemical, clinical and nutritional needs and diet modification in the treatment of diseases. Prerequisites: FCS-130, 337, 630.

FCS-653. Food Biotechnology Credit 3(1-4)
This course covers the impact of biotechnology on food production. It covers classical to modern day food biotechnology and beyond. Modern day genetic tools, as applied to food biotechnology, will be examined. A major focus will be on the improvement of microbes used in food production by modern biotechnological approaches. Prerequisites: BIOL 220.

FCS-679. Nutrition Education Credit 3 (3-0)
This course covers the philosophy, principles, methods and materials involved in nutrition education. Application of nutrition knowledge and skills in the development of the nutrition education curriculum and programs in schools and communities is implemented. Prerequisites: 332, 337; students must be advanced undergraduate or graduate level.

GRADUATE STUDENTS ONLY

FCS-715. Trace Elements and Nutrition Credit 3 (3-0)
Physiological functions and requirements of trace minerals as well as the roles of trace minerals in health and disease will be discussed. Prerequisite: FCS 337.

FCS-730. Nutrition and Disease Credit 3 (3-1)
Significance of nutrition in health and disease. Consideration of: (1) the methods of appraisal of human nutritional status to include clinical, dietary, biochemical, and anthropometric techniques; (2) various biochemical parameters used to diagnose and treat disorders; and (3) the role of diet as a therapeutic tool. Prerequisite: FCS-630 or equivalent.
FCS-733. Nutrition During Growth and Development Credit 3 (2-2)
Nutritional, genetical and environmental influences on human growth and development.
Prerequisite: FCS-630 or equivalent.

FCS-734. Nutrition Education Credit 3 (2-2)
Interpretation of the results of nutrition research for use with lay groups. Preparation of teaching materials based on research for use in nutrition education programs. Prerequisite: FCS 337.

FCS-735. Experimental Foods Credit 3 (2-2)
Objective and subjective evaluation of food, development and testing of recipes, and experimentation with food. Prerequisite: FCS-236 or equivalent.

FCS-736. Research Methods in Food and Nutrition Credit 4 (2-6)
Experimental procedures in food and nutrition research care of experimental animals, analysis of food, body fluids, and animal tissues. Prerequisite: MATH 224 or equivalent.

FCS-739. Thesis Research Credit 3 (0-6)
Research problems in food or nutrition.

FCS-740. Community Nutrition Credit 3 (3-0)
Individualized work, team teaching or guest speakers. Application of the principles of nutrition to various community nutrition problems of specific groups (geriatrics, preschoolers, adolescents and expectant mothers). Evaluation of nutrition programs of public health and social welfare agencies at local, state, federal and international levels. Prerequisite: FCS 337.

FCS-742. Cultural and Social Aspects of Food and Nutrition Credit 3 (3-0)
Sociological, psychological, and economical background of ethnic groups and their influence on food consumption patterns, and nutritional status. Prerequisite: FCS 337.

FCS-744. Seminar in Food and Nutrition Credit 2 (2-0)
Required of all graduates in Food and Nutrition.

FCS-745. Practicum in Food or Nutrition Credit 3 (0-6)
Field experiences with private or public agencies. Prerequisite: Students must have completed at least 12 credit hours.

FCS-788 Comprehensive Examination Credit 0
Student must sign up for this course in the semester that they will take the Comprehensive Examination.

PROGRAM OF STUDY FOR THE MAT IN CHILD DEVELOPMENT, EARLY EDUCATION AND FAMILY STUDIES

Prerequisites (12 hours or more as needed)
CUIN 617 Computers in Education
CUIN 625 American Public Education
or
CUIN 701 Philosophy of Education
FCS 611 Child Development: Prenatal through Middle Childhood
SPED 600 Introduction to Exceptional Children
FCS 700 Multicultural Perspectives in Child and Family

PHASE I: Initial Licensure (24 hours)
CUIN 619 Learning Theories
FCS 710 Assessment and Evaluation of Family & Consumer Sciences
FCS 701 Individual & Family in a Contemporary Society
FCS 629 Applied Principles of Infant/Toddler Curricula
FCS 639 Applied Principles of Preschool Kindergarten Curricula
FCS 659 Fundamentals of Emergent Literacy
Or
CUIN 623 Teaching Reading through Primary Years
FCS 702 Advanced Methods/Internship

Phase II: Advanced Studies Coursework (15 hours)

CUIN 728 Integrated Technology in the K-12 Curriculum
FCS 704 Advanced Seminar in Family and Consumer Sciences
FCS 711 Research & Inquiry in Family and Consumer Sciences
FCS 713 Early Childhood Leadership and Professional Development
FCS 788 Comprehensive Examination

Phase I and Phase II Total Hours = 39

COURSES in CHILD DEVELOPMENT, EARLY EDUCATION AND FAMILY STUDIES and RELATED AREAS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCS 611</td>
<td>Child Development: Prenatal through Middle Childhood</td>
<td>3</td>
</tr>
<tr>
<td>FCS 629</td>
<td>Applied Principles of Infant/Toddler Curricula</td>
<td>3</td>
</tr>
<tr>
<td>FCS 639</td>
<td>Applied Principles of Preschool Kindergarten Curricula</td>
<td>3</td>
</tr>
<tr>
<td>FCS 659</td>
<td>Fundamentals of Emergent Literacy</td>
<td>3</td>
</tr>
<tr>
<td>FCS 700</td>
<td>Multicultural Perspectives in Child and Family</td>
<td>3</td>
</tr>
<tr>
<td>FCS 701</td>
<td>Individual & Family in a Contemporary Society</td>
<td>3</td>
</tr>
<tr>
<td>FCS 702</td>
<td>Advanced Methods/Internship</td>
<td>3</td>
</tr>
<tr>
<td>FCS 704</td>
<td>Advanced Seminar in Family and Consumer Sciences</td>
<td>3</td>
</tr>
<tr>
<td>FCS 710</td>
<td>Assessment and Evaluation of Family & Consumer Sciences</td>
<td>3</td>
</tr>
<tr>
<td>FCS 711</td>
<td>Research & Inquiry in Family and Consumer Sciences</td>
<td>3</td>
</tr>
<tr>
<td>FCS 713</td>
<td>Early Childhood Leadership and Professional Development</td>
<td>3</td>
</tr>
<tr>
<td>FCS 788</td>
<td>Comprehensive Examination</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 617</td>
<td>Computers in Education</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 619</td>
<td>Learning Theories</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 623</td>
<td>Teaching Reading through Primary Years</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 625</td>
<td>American Public Education</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 701</td>
<td>Philosophy of Education</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 728</td>
<td>Integrated Technology in the K-12 Curriculum</td>
<td>3</td>
</tr>
<tr>
<td>SPED 600</td>
<td>Introduction to Exceptioned Children</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSES WITH DESCRIPTION IN FAMILY AND CONSUMER SCIENCES

Child Development, Early Education And Family Studies

Advanced Undergraduate and Graduate Courses

FCS 611. Child Development: Prenatal through Middle Childhood **Credit 3**
This course will focus on the advanced study of the child's cognitive, social-emotional, linguistic, physical, and adaptive development through an analysis of theory and research. A sociocultural framework will inform this study of child development.

FCS 629. Applied Principles of Infant/Toddler Curricula **Credit 3**
This is designed to link child development theories, assessment, and classroom practices for infants, toddlers, and young children, birth to age three, and their families. A major emphasis of this course is to prepare students to plan, implement, and evaluate developmentally, individually, and culturally appropriate child care practices, teaching strategies, and learning environments for infants, toddlers, and young children with and without disabilities. Students will apply content knowledge, skills, and dispositions in a field-based experience.

FCS 639. Applied Principles of Preschool Kindergarten Curricula **Credit 3**
This course focuses on the study of child development and early childhood education principles, materials, and evaluation measures underlying recommended practices and experiences for the typical and atypical development of children 3-5 years old. Special emphasis will include goals and objectives, activity plans, daily routines/schedules,
use of assessment information, teacher-made materials, inquiry questioning techniques, and use of technology. Simulated teaching activities and a field-based experience are required.

FCS 659. Fundamentals of Emergent Literacy
This course explores current research, theory, strategies, and resources that enable students to acquire theoretical and practical knowledge to design research-based literacy activities and environments. Topics explored include the social context of literacy learning; stages of language and literacy development; roles of families in supporting literacy development; cultural and linguistic similarities and differences; English language learners; performance-based assessment; and adaptations for children with special needs.

FCS 700. Multicultural Perspectives in Child and Family
Credit 3
This course examines the way that group and individual differences and similarities shape the purposes and practices of educational programs and policies. Also included will be an investigation of the social foundations of multicultural education and exploration of issues pertaining to teaching and learning methods that are responsive to diverse learners and incorporate families in the educational process.

FCS 701. Individual & Family in a Contemporary Society
Credit 3
This course will focus on the multiple theoretical approaches to understanding family functioning, priorities and concerns within the context of a diverse society. This course will also address the profession's role in promoting optimal family functioning. Prerequisites: FCS 611, SPED 600 or Approval by the instructor.

FCS 702. Advanced Methods/Internship
Credit 6
This course provides advanced supervised teaching experience in a classroom setting with a focus on applying developmental theory and research. Students will demonstrate a mastery of planning, implementing and evaluating teaching and learning strategies that are developmentally and culturally appropriate. Prerequisites: Approval of major department.

FCS 704. Advanced Seminar in Family and Consumer Sciences
Credit 3
This course will examine issues, trends and initiatives at the local, state, national and international levels. Prerequisite: Completion of Phase I or Approval of Instructor.

FCS 710. Assessment and Evaluation of Family & Consumer Sciences
Credit 3
This course investigates formal and informal methods of assessing student learning including observational techniques and standardized measures. Students will be able to select and interpret assessment measures and to use observational and assessment data to plan and modify teaching methods and curricula. National trends in assessment will be examined. Prerequisites: FCS 611, SPED 600.

FCS 711. Research & Inquiry in Family and Consumer Sciences
Credit 3
This course provides examination of current research in Child, Family, & Consumer Sciences. Introduction to social sciences research methods, analysis of research reports and other professional papers. Students will develop, conduct, and present a research project. Prerequisites: Completion of Phase 1 or Approval of Instructor.

FCS 713. Early Childhood Leadership and Professional Development
Credit 3
This course examines a variety of theoretical models of leadership, leadership roles and personal leadership styles. Topics will include problem analysis, collaboration, conflict resolution, group facilitation, effective communication and reflective practice. Dispositions and strategies for valuing, supporting and sustaining life long learning through personal and professional growth will be explored. Prerequisites: Completion of Phase 1.

FCS 788. Comprehensive Examination
Credit 0
Students must register for this course in the semester that they will take the Comprehensive Examination.

Department: Family and Consumer Sciences
Chair: Dr. Gladys G. Shelton
Mohamed Ahmedna, B.S., Institute Agronomique et Veterinaire Hassan II; M.S., Ph.D., Louisiana State University Adjunct Assistant Professor
Mary J. Baldwin, B.S., M.Ed., Ph.D., University of North Carolina at Greensboro, Cooperative Extension Faculty
Thessalenueve Hinnant-Bernard, B.S., M.S., North Carolina Central University, Ph.D., Iowa State University, Adjunct Assistant Professor
Thelma Feaster, B.S., North Carolina A&T State University; M.A., Case Western Reserve University, Ph.D., The Ohio State University, Cooperative Extension Faculty
Ipek Goktepe, B.S., University of Istanbul, M.S., Ph.D., Louisiana State University, Adjunct Assistant Professor
Thurman N. Guy, B.S., M.S., North Carolina A&T State University, Ed.D., University of North Dakota, Associate Professor
Salam A. Ibrahim, B.S., University of Mosul, M.S., University of Georgia, Ph.D., University of Kentucky, Adjunct Assistant Professor
Valerie J. McMillan, B.S., M.Ed, South Carolina State University; Ph.D. Iowa State University, Associate Professor
Nancy Oliver, B.S., Appalachian State University; M.Ed., University of North Carolina at Greensboro, Ph.D., University of Tennessee, Assistant Professor
Rosa Siler Purcell, B.S., North Carolina A&T State University; M.Ed., Ph.D., University of Illinois, Associate Professor
Geraldine Ray, B.S., North Carolina A&T State University; M.Ed., University of North Carolina Greensboro, Ph.D., Virginia Polytechnic Institute and State University, Associate Professor
Shirley Rouse McNeill, B.S., North Carolina A&T State University; M.Ed., North Carolina State, University of North Carolina at Greensboro, Cooperative Extension Faculty
Lizette Sanchez-Lugo, B.S., University of Puerto Rico, M.P.H., University of Puerto Rico, M.S., Wake Forest University, Ph.D., University of North Carolina at Greensboro, Assistant Professor
Gladys G. Shelton, B.S., North Carolina Central University, M.S., Cornell University, Ph.D., Virginia Polytechnic Institute and State University, Associate Professor and Chairperson
Claudette Smith, B.S., North Carolina A&T State University, M.S., Ph.D., The Ohio State University, Cooperative Extension Faculty
Ellen Smoak, B.S., M.S., Ph.D., University of North Carolina at Greensboro, Cooperative Extension Faculty
Sheilda Sutton, B.S., North Carolina Central University, M.S., North Carolina State University, Cooperative Extension Faculty
Carolyn S. Turner, B.S., M.S., University of North Carolina at Greensboro, Ph.D., Virginia Polytechnic Institute and State University, Associate Professor
Rosemarie Vardell, B.S. Eastern Illinois University, M.S. University of Illinois, Ph.D. University of North Carolina at Greensboro, Assistant Professor.
Jane Walker, B.S., Appalachian State University; M.S., Virginia Polytechnic Institute and State University; Ph.D., The University of North Carolina at Greensboro, Associate Professor
Meeshay Williams-Wheeler, B.S., University of North Carolina at Greensboro; M.S., North Carolina Central University, Ph.D., University of North Carolina at Greensboro, Assistant Professor

FACULTY EMERITI
Harold E. Mazyck, B.S., South Carolina State College, M.A., New York University, Ph.D., University of North Carolina at Greensboro, Professor Emeritus
Chung W. Seo, B.S., M.S., Korea University, Ph.D., Florida State University, Professor
OVERVIEW
The Master of Science in Technology Education with concentrations in Technology Education, Teaching; Trade and Industrial Education, Teaching; Workforce Development Director; Training and Development for Industry provide experiences with advanced concepts, technologies, research, and strategies for the preparation of teacher/practitioners. This program complies with INTASC, NCATE, DPI, and National Board Certification standards. This program will prepare graduate students to provide instructional leadership and to capably deliver technology education to the public schools and to business and industry of North Carolina.

OBJECTIVES
1. To develop advanced competencies in organizing and utilizing technology education strategies and methods.
2. To further develop understanding and application of objectives, principles, concepts, practices, and philosophies of technology education.
3. To further develop competencies in organizing, directing, and evaluating technology education programs, courses, and teaching-learning activities.
4. To develop proficiency in utilizing technological-educational problem solving and research techniques in technology education programs.
5. To further develop depth and/or breadth in technological competencies in the various fields of technology education.

DEGREES OFFERED
Master of Science - Technology Education
Concentrations: Technology Education, Teaching
Trade and Industrial Education, Teaching
Workforce Development Director
Training and Development for Industry

GENERAL PROGRAM REQUIREMENTS
Admission Criteria
Criteria for admission are GRE or MAT scores and an undergraduate GPA of 2.6 or better. It is the responsibility of the candidate to meet these requirements as well as any other requirements of the School of Graduate Studies.

Non-Licensure Students
The Class A license is not required for the concentration Training and Development for Industry.

Licensure Only Students
Candidates who are admitted to graduate studies as licensure only students can not be admitted to the Graduate Program until Class A licensure is obtained. After the Class A certificate is obtained; application for admission to the graduate program may be pursued.

DEPARTMENTAL REQUIREMENTS
Master’s degree candidates must complete a minimum of 39 semester hours of graduate level courses, which include: 12 semester hours of professional education courses; 15 semester hours of required courses in the thesis or non-thesis option; and 12-semester hours in one of four concentrations: Technology Education, Teaching; Trade and Industrial Education,
Teaching; Workforce Development Director or Training and Development for Industry. The two Teaching concentrations may lead to Advanced Licensure. The grade point average in the graduate program must be 3.0 or better.

All majors must pass a Products of Teaching Portfolio due the last full month of the semester in which the student graduates. The portfolio must meet the requirements of the North Carolina State Department of Public Instruction’s performance based licensure. TECH 717 or TECH 718 helps the student to establish the portfolio.

It is the student’s responsibility to enroll in TECH 788, Comprehensive Final Exam, in the semester he or she intends to graduate.

It is the student’s responsibility to APPLY FOR GRADUATION through the School of Graduate Studies before the deadline posted on the University Calendar in the semester he or she intends to graduate.

The student must be enrolled the semester he or she plans to graduate.

The student must be continuously enrolled until the student graduate, and the student must complete the degree within 6 years.

At least fifty percent of the courses counted towards the degree must be numbered 700 and above.

Trade and Industrial Education, Teaching Concentration majors (who lack a continuing license in Trade and Industrial Education) may be required to complete up to 600 hours of internship in industry in the area of technical specialty if they lack at least that amount of relevant, verifiable work experience in the specialty area. This is in addition to the courses posted on the program of study. However, this internship may be applied toward two electives in the Concentration Courses section of the program of study.

Documentation of Approvals: (1) Comprehensive Examination passed, (2) Completion of Research Project and (3) Completion of Comprehensive Portfolio

The Curriculum Guide outlines the sequence of required courses and the benchmarks. A copy of this guide will be kept in the student’s folder in the advisor’s office to be updated at each advising conference. Advising conferences must be arranged by the candidate prior to registration for the next semester.

CAREER OPPORTUNITIES

Excellent employment opportunities exist for persons holding advanced degrees in all areas of Technology Education. Public schools in North Carolina and elsewhere are in constant need of securing licensed teachers, supervisors, and administrators for technology programs. Many career opportunities also exist for Technology Education specialists in occupations that do not require state teacher licensure. These persons are employed as teachers, training directors, supervisors and managers in post-secondary schools and colleges or in the private sector of industry.

Paradigm for Master of Science for Technology Education
Concentrations: Technology Education, Teaching
Trade and Industrial Education, Teaching
Workforce Development Director
Training and Development for Industry

Professional Education Courses
CUIN 619 Learning Theories 3 sh
CUIN 721 Advanced Methods 3 sh
CUIN 729 Diversity Issues in Public Schools 3 sh
CUIN 743 or CUIN 766 Foundations or Instr. Tech. or Distance Ed. 3 sh
sub total 12 sh
Required courses for Thesis Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH 672</td>
<td>Curriculum Development in Technological Education</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 762</td>
<td>Evaluation of Technological Education Programs</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 767</td>
<td>Research and Literature in Technological Education</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 768</td>
<td>Technological Seminar (abide by university deadlines for the thesis)</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 769</td>
<td>Thesis Research (abide by university deadlines)</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 788</td>
<td>Comprehensive Final Examination (take the last semester; date announced in class)</td>
<td>0 sh</td>
</tr>
</tbody>
</table>

All students must apply for graduation by the deadline in their last semester.
All students must turn in their portfolios by the last full month of their last semester.

sub total 15 sh

OR

Required courses for Non-thesis Option

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH 672</td>
<td>Curriculum Development in Technological Education</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 762</td>
<td>Evaluation of Technological Education Programs</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 767</td>
<td>Research and Literature in Technological Education</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 717/718</td>
<td>Special Problems I/II</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 768</td>
<td>Technological Seminar</td>
<td>3 sh</td>
</tr>
<tr>
<td>TECH 788</td>
<td>Comprehensive Final Examination (take the last semester; date announced in class)</td>
<td>0 sh</td>
</tr>
</tbody>
</table>

All students must apply for graduation by the deadline in their last semester.
All students must turn in their portfolios by the last full month of their last semester.

sub total 15 sh

Concentration in Technology Education, Teaching

(Select 12 semester hours from the following list. Each course in the list is 3 semester hours.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH 608</td>
<td>Study of Technology</td>
</tr>
<tr>
<td>TECH 617</td>
<td>Introduction to Coordination of Industry and Education Partnerships</td>
</tr>
<tr>
<td>TECH 618</td>
<td>Technological Education for Special Needs Students</td>
</tr>
<tr>
<td>TECH 619</td>
<td>Construction Systems for Technological Education</td>
</tr>
<tr>
<td>TECH 620</td>
<td>Manufacturing Systems for Technological Education</td>
</tr>
<tr>
<td>TECH 621</td>
<td>Communication Systems for Technological Education</td>
</tr>
<tr>
<td>TECH 622</td>
<td>Transportation Systems for Technological Education</td>
</tr>
<tr>
<td>TECH 623</td>
<td>Research and Development in Technological Education</td>
</tr>
<tr>
<td>TECH 626</td>
<td>Curriculum Modification in Technological Education for Special Needs Population</td>
</tr>
<tr>
<td>TECH 664</td>
<td>Occupational Exploration for Middle Grades</td>
</tr>
<tr>
<td>TECH 665</td>
<td>Middle Grades Industrial Laboratory</td>
</tr>
<tr>
<td>TECH 666</td>
<td>Technological Education Teaching Methods and Internship</td>
</tr>
<tr>
<td>TECH 669</td>
<td>Safety in the Instructional Environment of Technological Education</td>
</tr>
<tr>
<td>TECH 682</td>
<td>Computer Applications for Education and Industrial Training</td>
</tr>
<tr>
<td>TECH 715</td>
<td>Advanced Research and Development Practices for Technological Education</td>
</tr>
<tr>
<td>TECH 717</td>
<td>Special Problems I</td>
</tr>
<tr>
<td>TECH 718</td>
<td>Special Problems II</td>
</tr>
<tr>
<td>TECH 731</td>
<td>Advanced Graphic Techniques</td>
</tr>
<tr>
<td>TECH 763</td>
<td>Technological Education for Elementary Grades</td>
</tr>
<tr>
<td>TECH 770</td>
<td>Systematic Design of Training and Development Programs</td>
</tr>
<tr>
<td>GCS 630</td>
<td>Multimedia and Videography</td>
</tr>
<tr>
<td>GCS 631</td>
<td>Advanced Computer Aided Design</td>
</tr>
<tr>
<td>GCS 632</td>
<td>Graphic Animation</td>
</tr>
<tr>
<td>GCS 634</td>
<td>Advanced Multimedia and Videography</td>
</tr>
<tr>
<td>GCS 635</td>
<td>Advanced Principles of Graphic Communications Technology</td>
</tr>
<tr>
<td>GCS 636</td>
<td>Electronic Imaging and Distance learning</td>
</tr>
<tr>
<td>GCS 670</td>
<td>Electronic Imaging and Graphic Communication</td>
</tr>
<tr>
<td>GCS 719</td>
<td>Seminar in Computer Aided Drafting and Design</td>
</tr>
<tr>
<td>GCS 733</td>
<td>Graphic Communication Systems Organization and Management</td>
</tr>
</tbody>
</table>
Concentration in Trade and Industrial Education, Teaching
(Select 12 semester hours from the following list. Each course in the list is 3 semester hours.)
- GCS 601 Advanced Flexography Methods
- GCS 610 Internship in Industry I
- GCS 611 Internship in Industry II
- GCS 630 Multimedia and Videography
- GCS 631 Advanced Computer Aided Design
- GCS 632 Graphic Animation
- GCS 633 Advanced Machine Design and Drafting
- GCS 634 Advanced Multimedia and Videography
- GCS 635 Advanced Principles of Graphic Communications Technology
- GCS 636 Electronic Imaging and Distance Learning
- GCS 644 Advanced Architectural Drafting and Design
- GCS 670 Electronic Imaging and Graphic Communication
- GCS 719 Seminar in Computer Aided Drafting and Design
- GCS 731 Advanced Graphic Techniques
- GCS 733 Graphic Communication Systems Organization and Management
- TECH 660 Career Development and Work-based Learning
- TECH 661 Workforce Development Program Planning and Management
- TECH 663 History and Philosophy of Technological Education
- TECH 664 Occupational Exploration for Middle Grades
- TECH 665 Middle Grades Industrial Laboratory
- TECH 669 Safety in the Instructional Environment of Technological Education
- TECH 670 Introduction to Workplace Training and Development
- TECH 671 Methods and Techniques of Workplace Training and Development
- TECH 682 Computer Applications for Education and Industrial Training
- TECH 717 Special Problems I
- TECH 718 Special Problems II
- TECH 770 Systematic Design of Training and Development Programs
- CUIN 605 Concepts in Career Education

Concentration in Workforce Development Director
(Select 12 semester hours from the following list. Each course in the list is 3 semester hours.)
- GCS 610 Internship in Industry I
- GCS 611 Internship in Industry II
- GCS 719 Seminar in Computer Aided Drafting and Design
- TECH 660 Career Development and Work-based Learning
- TECH 661 Workforce Development Program Planning and Management
- TECH 663 History and Philosophy of Technological Education
- TECH 669 Safety in the Instructional Environment of Technological Education
- TECH 670 Introduction to Workplace Training and Development
- TECH 671 Methods and Techniques of Workplace Training and Development
- ADED 773 Leadership
- CUIN 612 Instructional Design
- CUIN 709 Administration and Supervision
- CUIN 723 Principles of Teaching

Concentration in Training and Development for Industry
(Select 12 semester hours from the following list. Each course in the list is 3 semester hours.)
- GCS 610 Internship in Industry I
- GCS 611 Internship in Industry II
- TECH 663 History and Philosophy of Technological Education
- TECH 669 Safety in the Instructional Environment of Technological Education
- TECH 670 Introduction to Workplace Training and Development
- TECH 671 Methods and Techniques of Workplace Training and Development
TECH 682 Computer Applications for Education and Industrial Training
TECH 717 Special Problems I
TECH 718 Special Problems II
TECH 764 Administration and Supervision of Technological Education
TECH 766 Curriculum Laboratories in Industrial Settings
TECH 770 Systematic Design of Training and Development Programs
ADED 714 The Community College and Post-secondary Education
ADED 773 Leadership
ADED 776 Principles of College Teaching
ADED 777 Seminar in Higher Education
ADED 778 Student Personnel Services
ADED 779 Technical Education in Community Colleges

TOTAL: 40

Note: GCS 667 Independent Studies in Technological Education I and GCS 668 Independent Studies in Technological Education II may be substituted for selected courses with consent of advisor.

COURSES WITH DESCRIPTION IN GRAPHIC COMMUNICATION SYSTEMS AND TECHNOLOGICAL STUDIES
Advanced Undergraduate and Graduate

GCS-601. Advanced Flexographic Methods Credit 3 (2-2)
This course is designed to develop advanced proficiency in flexographic printing. It includes the prediction of future flexographic markets, products, substrates, inks, solvents, and industry standards for color processing.

TECH-608. Study of Technology Credit 3 (2-2)
This course emphasizes contemporary methods of developing problem solving skills through the four technologically adaptive systems (communications, construction, manufacturing, transportation), mathematics and science.

TECH-610. Internship in Industry I Credit 3 (0-7)
Students participate in an industrial setting during a semester in their major field of interest. They will be evaluated during the internship and keep a field diary of events and experiences. Three semester hours is the maximum hours to be earned during a semester.

TECH-611. Internship in Industry II Credit 3 (0-7)
Students participate in an industrial setting during a semester in their major field of interest. They will be evaluated on reports from industry and a field diary of events and experiences. Three semester hours is the maximum hours to be earned during a semester.

TECH-617. Introduction to Coordination of Industry and Education Partnerships Credit 3 (3-0)
This course examines the interrelationship, organizational structure, and logistics of industry and education partnerships. Topics include establishing guidelines, developing networks, coordinating personnel, supervising participants, and evaluating performance.

TECH-618. Technological Education for Special Needs Students Credit 3 (3-0)
Opportunities are provided for teachers, counselors, and administrators to improve their skills in working with disadvantaged/handicapped learners in technological education. Emphasis will be placed on motivational and creative instructional strategies, discipline, drug awareness, and module development.

TECH-619. Construction Systems for Technological Education Credit 3 (2-2)
The evolution of construction and construction systems on human and societal development will be discussed. Teaching strategies regarding construction systems including design, engineering, site preparation, foundations, superstructure, mechanical systems, and clearing and finishing the structure will be studied. Laboratory activities will be included appropriate for secondary, post-secondary, and industrial settings.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH-620</td>
<td>Manufacturing Systems for Technological Education</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course will cover the organization, product design, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>production systems associated with manufacturing. It will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>emphasize teaching strategies and curriculum development in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>relation to manufacturing systems. Laboratory activities will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be included appropriate for secondary, post-secondary, and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>industrial settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECH-621</td>
<td>Communication Systems for Technological Education</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course studies the communication systems model and its</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>application to sending and receiving messages. Topics include</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>planning and producing graphically and electronically</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>generated messages to individual and mass audiences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laboratory activities will be included appropriate for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>secondary, post-secondary, and industrial settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECH-622</td>
<td>Transportation Systems for Technological Education</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>The significance of the evolution of transportation and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>transportation systems on human and societal development</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>will be studied. Topics include the role of land, air, water,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>space, and energy systems on rural, urban, and suburban</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lifestyles. Laboratory activities will be included</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appropriate for secondary, post-secondary, and industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECH-623</td>
<td>Research and Development in Technological Education</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This is a synthesis-based course where students research</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>problems relative to any one of the four technological systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Communications, Transportation, Construction, Manufacturing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and develop solution(s) to the identified problem(s). The</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>interrelationship among the four technological systems will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>be explored. Laboratory activities will be included</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as appropriate for secondary, post-secondary, and industrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECH-626</td>
<td>Curriculum Modification in Technological Education for Special</td>
<td>3</td>
<td>(3-0)</td>
</tr>
<tr>
<td></td>
<td>Needs Populations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course examines program modifications for</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>disadvantaged/handicapped learners in technological education.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Topics include curriculum adaptation, instructional planning,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>teaching strategies, media development, and performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>assessment for special needs learners.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS-630</td>
<td>Multimedia and Videography</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course covers the development and utilization of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multimedia presentations and videography in the educational</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>environment. Topics include principles of composition,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>planning, editing, and producing multimedia presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>appropriate for educational or industrial settings.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computers and software packages will be used to develop the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>presentations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS-631</td>
<td>Advanced Computer-Aided Design</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course focuses on developing knowledge and skill with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>computer software used with solid modeling and the use of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>computer software to generate these models. Emphasis will</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>also be placed on the creation of wire-frame and surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>models. Analysis, fabrication and documentation of these</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>models will be addressed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS-632</td>
<td>Graphic Animation</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course deals with the creation and manipulation of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>computer generated geometric shapes and models. Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>include creation of 3D scenes, assignment of materials,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lights and textures, keyframing, rendering, and animation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS-633</td>
<td>Advanced Machine Design and Drafting</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course covers advanced drafting and design techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>associated with machine components and assembly. Topics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>include tool design and material selection, work-holding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>principles, design of jigs, fixtures and press working tools,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>inspection and gaging, joining processes, modular tooling,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and economics of design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS-634</td>
<td>Advanced Multimedia and Videography</td>
<td>3</td>
<td>(2-2)</td>
</tr>
<tr>
<td></td>
<td>This course provides advanced strategies and techniques in</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the development of multimedia presentations and videography.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State of the art equipment will be used in addition to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>computers and software packages to produce professional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>presentations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GCS-635. Advanced Principles of Graphic Communications Technology Credit 3 (2-2)
Advanced principles in graphic reproduction. Study of color applications, photographic applications, design and pre-press techniques. Technical experiences in reproduction methods and quality control.

GCS-636. Electronic Imaging in Distance Learning Credit 3 (2-2)
This course integrates the strategies and techniques of electronic imaging into distance learning applications. Areas of emphasis include Web page development and management unique to distance learning delivery systems for the Internet.

GCS-637. Industrial and Customer Relations in Graphic Communications Credit 3 (3-0)
This course focuses on industrial and customer relations within the field of graphic communications. Responsibilities and duties of the manager and his/her relationship to higher-level supervisors, subordinates, associates and customers are examined. Emphasis is placed on developing skills essential for persuasive communication.

GCS-644. Advanced Architectural Drafting and Design Credit 3 (2-2)
This course covers advanced drafting and design techniques associated with the building industries. Topics include the development of working drawings, site plans, elevations, sections, and details in accordance with building codes. Upon completion the student should be able to plan and develop architectural drawings that comply with accepted architectural standards and procedures.

TECH-660. Career Development and Work-based Learning Credit 3 (3-0)
This course covers implementation strategies for various work-based learning programs that will prepare youth to enter the workplace. Emphasis will be placed on going beyond the classroom into the community to develop workplace knowledge and skills.

TECH-661. Workforce Development Program Planning and Management Credit 3 (3-0)
This course covers principles and strategies of program planning and management for workforce development. Emphasis will be placed on scheduling, federal and state regulations, procedures and special issues.

TECH-662. Technological Education Course Construction Credit 3 (3-0)
Selecting, organizing, and integrating objectives, content, media and materials appropriate to technological courses will be discussed. Topics include strategies and techniques of designing and implementing group and individual teaching-learning activities, constructing teacher made instructional aides and devices, and curriculum planning and design.

TECH-663. History and Philosophy of Technological Education Credit 3 (3-0)
This course examines the chronological and philosophical development of technological education with special emphasis on its growth and function in American schools.

TECH-664. Occupational Exploration for Middle Grades Credit 3 (3-0)
Designed for persons who teach or plan to teach middle grades occupational exploration programs. Emphasis will be placed on occupational exploration in the curriculum, sources and uses of occupational information, approaches to middle grades teaching, and philosophy and concepts of occupational education.

TECH-665. Middle Grades Industrial Laboratory Credit 3 (3-0)
Course organization, teaching strategies, resource and facilities for teaching industrial-technological career exploration in Middle Grades is stressed. Emphasis is on occupational clusters in manufacturing, construction, communication, transportation, fine arts, and public service.

GCS 666. Technological Education Teaching Methods and Internship Credit 4 (3-2)
Technology education teaching methodology will be studied. Students will learn unit planning, lesson planning, group and individual teaching techniques, media development and use, testing and evaluating
outcomes of learning. Students will also learn student behavior control, addressing diversity through teaching methods, laboratory management, teaching ethics, working with families and teacher reflection on teaching and learning. Undergraduate students and MAT students who are currently teaching in the schools will participate in a 60 hour structured internship under the guidance of a master teacher. MAT licensure-only students not currently teaching in schools must participate in a 10-week, full-time internship, which fully engages the candidate in teaching and assessment of students.

GCS-667. Independent Studies in Technological Education I Credit 3 (3-0)
This course involves intensive study in the field of technological education under the direction of a faculty advisor. Prerequisite: Approval of graduate studies coordinator.

GCS-668. Independent Studies in Technological Education II Credit 3 (3-0)
This course involves intensive inquiry in the field of technological education under the direction of a faculty advisor. Prerequisite: Approval of graduate studies coordinator.

TECH-669. Safety in the Instructional Environment of Technological Education Credit 3 (3-0)
This course examines the principles and techniques of organizing and supervising safety in technological education. Topics include instructional strategies, state and national laws, special hazards, color coding, and accident analysis.

GCS-670. Electronic Imaging in Graphic Communication Credit 3 (2-2)
Theory, principles and practices of electronic non-impact printing are investigated in class. Students will be given opportunities to explain, visit and utilize current non-impact printing systems through visits to industrial settings, classroom projects and special demonstrations.

TECH-670. Introduction to Workplace Training and Development Credit 3 (3-0)
Overview of the field of training and development. Management concerns related to organizing, operating and financing training and development programs are discussed. Roles common to practitioners across the broad field of Human Resource Development are covered. Interpersonal perspectives and implications for the future are included.

TECH-671. Methods and Techniques for Workplace Training and Development Credit 3 (3-0)
Emphasis on the methods and techniques common to exemplary training programs. Designing learning programs and selecting appropriate media methods and resources using sound theoretical framework is the goal. Evaluation of programs and instruction is discussed.

TECH-672. Curriculum Development Using Microcomputers in Technological Education Credit 3 (3-0)
This course will focus on the theory, principles, concepts and philosophy of curriculum development. Topics include utilization of microcomputers, creation of learning activity packages, and integration of resources.

TECH-682. Computer Applications for Education and Industrial Training Credit 3 (2-2)
This course deals with strategies and techniques for the utilization of the computer for networking, videoconferencing, and distance learning. It also covers satellite and teleconferencing in addition to information services and the Internet as vehicles to assist in the educational process.

GRADUATE STUDENTS ONLY

TECH-715. Advanced Research and Development Practices for Technological Education Credit 3 (3-0)
This course is concerned with research and problem-solving related to technical subsystems of technological education. Emphasis is placed on research procedure and techniques, innovations or inventions, and the results from the research.
TECH-717. Special Problems I Credit 3 (3-0)
This course is an advanced study in modern technology that deals with recent developments, trends, practices and procedures in industries. Learning activities include individual and group research and experimentation involving selection, design, development, and evaluation of technical reports and instructional materials.

TECH-718. Special Problems II Credit 3 (3-0)
Individual study related to modern technology including research and experimentation involving selection, design, development, and evaluation of instructional materials will be the focus of this course.

TECH-719. Seminar in Computer Aided Drafting and Design Credit 3 (2-2)
This course surveys the CADD software packages currently used in industrial and educational fields. It explores the uses and applications of these packages, and covers the transfer of data across platforms. Strengths of various software packages for special situations are emphasized.

CS-731. Advanced Graphical Techniques Credit 3 (2-2)
This course is designed to study the applications of American National Standards Institute (ANSI) and International Standards Organization (ISO) drafting standards, computer aided graphical problem-solving techniques, drafting methods in certain specialty areas, and different conventions related to tolerancing. Use of literature and research is expected.

GCS-733, Graphic Communications Organization and Management Credit 3 (3-0)
This course discusses formal and informal organizations, group dynamics, motivation, and managing conflict and change. Emphasis will be placed on different management practices and leadership styles as they relate to satisfaction and morale, organizational effectiveness, productivity, and profitability in the graphic communications industry.

TECH-762. Evaluation of Technological Education Programs Credit 3 (3-0)
This course examines standards, criteria, and strategies for evaluating technological education curricula, facilities, personnel, and programs. Activities include designing and conducting.

TECH-763. Technological Education for Elementary Grade Credit 3 (3-0)
This course includes the rationale, philosophy, concepts, curricula, resources, learning activities, methods and evaluation for technological education in the elementary grades.

TECH-764. Supervision and Administration of Technological Education Credit 3 (3-0)
This course examines the relationship of technological education to the general curriculum and the administrative responsibilities involved. Courses of study, costs, coordination problems, class and laboratory organization, and the development of an effective program of supervision will be emphasized.

TECH-765. Evaluation of Training in Industrial Settings Credit 3 (3-0)
Study and application of principles of evaluation in industrial training settings. Emphasis is placed on test construction, measurement techniques, and evaluation results.

TECH-766. Curriculum Laboratories in Industrial Settings Credit 3 (3-0)
Development and preparation of instructional materials for industrial classroom use. Students select and develop significant areas of instruction for use in industrial settings. Modularized instruction that relates to industrial settings is studied for use and application in the private sector of business and industry. Opportunities are provided for review of actual industrial training materials.

TECH-767. Research and Literature in Technological Education Credit 3 (3-0)
This course studies research techniques applied to technical and educational papers and thesis classification of research. Topics include selection of subjects; delineation and planning of procedures; collection, organization and interpretation of data; and review of literature in technological education.
TECH-768. Technological Seminar Credit 3 (3-0)
This course is designed to enable non-thesis graduate majors to conclude educational and technical investigations. Each student is expected to plan and complete a research paper and present a summary of the findings to the seminar. Prerequisite: TECH 767.

TECH-769. Thesis Research Credit 3 (3-0)

TECH-788. Comprehensive Examination Credit 0(0-0)
Enrolling in this course is how one registers for the required comprehensive final exam.

MSIT-Master of Science in Industrial Technology (Graphic Communication Systems)
The School of Technology at North Carolina A&T State University offers a MSIT- Master of Science in Industrial Technology (Graphic Communication Systems) degree. This degree program is coordinated by the Department of Manufacturing Systems and is designed to increase students’ understanding of industrial management challenges in an array of technical areas and to explore effective methods for dealing with accelerated technological changes.

ADMISSION REQUIREMENTS
The MSIT (Graphic Communication Systems) degree program, within the School of Technology, requires the GRE General Test as part of the admission process. A minimum score is not required at this time. Please contact the Graduate School Office for more information.

PROGRAM OBJECTIVES
The MSIT (Graphic Communication Systems) degree program is built upon the competencies achieved at the baccalaureate level in the graphic communication systems curriculum and thus enables students to secure applications oriented “technical-management” positions in today’s industrial environment. The objectives of the program are:
1. To provide quality competency-based instruction so that men and women will be prepared to enter the fields of graphic communication systems.
2. To assist majors in developing those critical competencies in the sciences, communications, mathematics, and technical specialties essential to securing positions in related industrial, business and government careers.
3. To develop adequate problem solving, critical thinking, oral, and written communication skills.
4. To apply the use of various high technologies, e.g., computer-aided drafting and design (CADD), internet technologies, flexography, and lithography.

TARGET AUDIENCE AND CAREER OPPORTUNITIES
This program is designed to serve the diverse needs of persons who are interested in pursuing careers in technology. Included in this group are the following: (1) persons currently employed in industrial management positions and have professional growth aspirations; (2) individuals recently completing their undergraduate study and want additional preparation prior to embarking on a career in industry; and (3) students interested in entering an advanced graduate degree program (Ph.D., Ed.D. etc.) and whose ultimate goal is university teaching and/or research. Graduates of the program should be able to perform more creatively and competently in leadership roles involving planning, problem solving, and decision-making. Additionally, the program is designed to enhance student competencies in the areas of research and scholarly writing.

INDUSTRIAL TECHNOLOGY (GRAPHIC COMMUNICATION SYSTEMS)
A total of 36 hours is required for the Master of Science in Industrial Technology. The total consists of 12 SH of Core Courses, 6 SH of Management Electives, 9 SH of Technical Electives and 9 SH of Required Courses.
PROGRAM CURRICULA (All courses are 3 credit hours)

Core Courses (12 credit hours)

MSIT 610 Problem Solving in Industrial Technology
MSIT 673 Industrial Productivity Measurement and Analysis
MSIT 700 Concepts of Technological Innovations
MSIT 740 Leadership Development Seminar

Graphic Communication Systems and Technological Studies

-Management Electives- (6 credit hours)

GCS 637 Industrial and Customer Relations in Graphic Communications
GCS 733 Graphic Communications Organization & Management
TECH 670 Introduction to Workplace Training and Development
TECH 671 Methods & Techniques of Workplace Training & Development

-Technical Electives- (9 credit hours)

GCS 601 Advanced Flexographic Methods
GCS 630 Multimedia and Videography
GCS 631 Advanced Computer-Aided Designed
GCS 632 Graphic Animation
GCS 633 Advanced Machine Design and Drafting
GCS 634 Advanced Multimedia and Videography
GCS 635 Advanced Principles of graphic Communications Technology
GCS 636 Electronics Imaging in Distance Education
GCS 644 Advanced Architectural Drafting and Design
GCS 668 Independent Studies in Technological Education
GCS 670 Electronics Imaging in Graphic Communication
GCS 719 Seminar in Computer-Aided Drafting and Design
GCS 771 Master Supervised Teaching I
GCS 772 Master Supervised Teaching II
GCS 731 Advanced graphic Techniques
GCS 788 Comprehensive Examination (0 credit hours)
TECH 717 Special Problems I
TECH 718 Special Problems II

Required Courses (9 hours)

Non-Thesis Option
MSIT 750 Internship I
MSIT 751 Internship II
MSIT 789 Master’s Project

Thesis Option
MSIT 780 Statistical and Research Methods in Industrial Technology II
MSIT 791 Thesis I
MSIT 792 Thesis II

PROPOSED MASTER OF SCIENCE IN INDUSTRIAL TECHNOLOGY
Concentration in Graphic Communication Systems
Coursework-Only Option

Student must have a minimum of three years of industry experience in the concentration of graphic communication systems. A total of 42 hours is required for a Master of Science in Industrial Technology with a concentration in Graphic Communication Systems. The total consists of 12 HOURS of Core Courses; 9 SH of Management Courses, 15 HOURS of Technical Electives, and 6 HOURS of Required Courses. Fifty percent of semester hours must be earned from 700 level courses.
Core Courses
(12 HOURS)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Title</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hrs</td>
<td>Problem Solving in Industrial Technology</td>
<td>MSIT 610</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Concepts of Technological Innovations</td>
<td>MSIT 700</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Leadership Development Seminar</td>
<td>MSIT 740</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Statistical & Research Methods in Industrial Technology I</td>
<td>MSIT 779</td>
</tr>
</tbody>
</table>

Management Courses – Graphic Communication Systems
(9 HOURS)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Title</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hrs</td>
<td>Graphic Communications Organization and Management</td>
<td>GCS 733</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Systematic Design of Training and Development for Industry</td>
<td>TECH 770</td>
</tr>
</tbody>
</table>

(Student is to select one course from the following.)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Title</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hrs</td>
<td>Industrial and Customer Relations in Graphic Comm.</td>
<td>GCS 637</td>
</tr>
<tr>
<td>3 hrs</td>
<td>CADD Management</td>
<td>GCS 638</td>
</tr>
</tbody>
</table>

Technical Electives – Graphic Communication Systems
(Student is to select 15 HOURS. Student may substitute up to 6 HOURS of Technical Elective courses from any School of Technology department with prior approval of advisor.)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Title</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hrs</td>
<td>Advanced Flexographic Methods</td>
<td>GCS 601</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Multimedia and Videography</td>
<td>GCS 630</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Advanced Computer Aided Design</td>
<td>GCS 631</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Graphic Animation</td>
<td>GCS 632</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Advanced Machine Design and Drafting</td>
<td>GCS 633</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Advanced Multimedia and Videography</td>
<td>GCS 634</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Advanced Principles in Graphic Communications Tech.</td>
<td>GCS 635</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Electronic Imaging in Distance Learning</td>
<td>GCS 636</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Digital Architecture</td>
<td>GCS 639</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Architectural Technology and Sustainable Design</td>
<td>GCS 640</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Architectural Animation and Rendering</td>
<td>GCS 641</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Advanced Architectural Drafting and Design</td>
<td>GCS 644</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Electronic Imaging in Graphic Communications</td>
<td>GCS 670</td>
</tr>
</tbody>
</table>

Required Courses:
(6 HOURS)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Title</th>
<th>Course Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 hrs</td>
<td>Master’s Comprehensive Exam</td>
<td>GCS 788</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Special Problems I</td>
<td>TECH 717</td>
</tr>
<tr>
<td>3 hrs</td>
<td>Special Problems II</td>
<td>TECH 718</td>
</tr>
</tbody>
</table>

Master of Arts in Teaching for Technology Education

Concentrations: Technology Education, Teaching*

Trade and Industrial, Teaching**

Training and Development for Industry, Non-Licensure

Master of Arts in Teaching for Technology Education

Concentration: Technology Education, Teaching*
Phase I Courses for Technology Education, Teaching Concentration*

CUIN 619 Learning Theories 3 hours
CUIN 624 Teaching Reading in the Secondary School 3 hours
Choose one of the following four courses:
 - TECH 619 Construction Systems 3 hours
 - TECH 620 Manufacturing Systems 3 hours
 - TECH 621 Communication Systems 3 hours
 - TECH 622 Transportation Systems 3 hours
TECH 662 Technological Education Course Construction 3 hours
TECH 666 Technological Education Teaching Methods and Internship 4 hours
TECH 669 Safety in the Instructional Environment of Technological Education 3 hours
TECH 717/718 Special Problems I or II (starts portfolio development) 2 hours
subtotal 22 hours

Phase I Benchmarks for Technology Education, Teaching Concentration
*Pass Praxis II (Technology Education, Teaching Only).
Qualify for a clear Class A license.
Maintain a 3.0 GPA or better.
Pass the Products of Teaching Portfolio Assessment.
Submit GRE scores.

Phase II Courses (Technology Education)

CUIN 721 Advanced Methods and Internship 3 hours
CUIN 729 Diversity Issues in Public Schools 3 hours
TECH 762 Evaluation of Technological Education Programs 3 hours
TECH 764 Administration and Supervision of Technological Education 3 hours
TECH 767 Research and Literature in Technological Education (preparing a research proposal) 3 hours
TECH 768 Technological Seminar (conducting the research proposal) 3 hours
TECH 788 Comprehensive Final Exam 0 hours
subtotal 18 hours

Phase II Benchmarks
Pass the Products of Teaching Portfolio Assessment. TOTAL 40 hours
Maintain a GPA of 3.0 or better.

COURSES WITH DESCRIPTION IN INDUSTRIAL TECHNOLOGY
Manufacturing Systems

MSIT-610. Problem Solving in Industrial Technology Credit 3 (3-0)
This course teaches the fundamentals of problem solving as they are applied to an industrial technology environment. Included are analytical as well as creative problem solving techniques. Industrial projects within assigned teams are required.

MSIT-673. Industrial Productivity Measurement and Analysis Credit 3 (3-0)
Study of work measurement and method analysis towards establishing work standards and measuring productivity in industries.
MFG-700. Concepts of Technological Innovations Credit 3 (3-0)
This course will provide instruction in the concepts of technological innovations. Contemporary issues are also explored.

MSIT-740. Leadership Development Seminar Credit 3 (3-0)
This is an experiential seminar designed for assessment of the individual’s managerial strengths and weaknesses in a manufacturing management position. Current and evolving leadership issues will be discussed and leadership models will be presented. Managerial and leadership issues in high participation work places will be stressed. Students will participate in behavioral simulations and receive psychometric feedback.

MSIT-750. Internship I Credit 3 (0-6)
This course is designed to provide students with an internship experience in an industrial environment related to their technical discipline. Students must be employed full-time for one semester. Evaluation will be based on reports from the student’s industrial supervisor and the university coordinator. Prerequisite: 15 hours graduate credit.

MSIT-751. Internship II Credit 3 (0-6)
This course is designed to provide students with an additional semester of internship experience related to their technical discipline.

MSIT-789. Master’s Degree Project Credit 3 (3-0)
The master’s degree project is designed to be a culminating experience for the master’s degree. It is applications oriented and focuses on an actual project related to the student’s technical discipline. The course is intended to integrate the learning from the classes taken in the degree program. Prerequisite: 24 hours graduate credit.

MSIT-791. Thesis I Credit 3 (3-0)
The student will select a research topic that is of special interest and approved by his/her graduate thesis advisor. Prerequisite: MSIT 790 or consent of advisor.

MSIT-792. Thesis II Credit 3 (3-0)
The student may enroll in this course to complete approved research for the thesis. Prerequisites: MSIT 790, MSIT 791 or consent of advisor.

Graphic Communication Systems and Technological Studies

GCS-601. Advanced Flexographic Methods Credit 3 (1-4)
This course is designed to develop advanced proficiency in flexographic printing. It includes the prediction of future flexographic markets, products, substrates, inks, solvents, and industry standards for color processing.

GCS-630. Multimedia and Videography Credit 3 (2-2)
This course covers the development and utilization of multimedia presentations and videography in the educational environment. Topics include principles of composition, planning, editing, and producing multimedia presentations appropriate for educational or industrial settings. Computers and software packages will be used to develop the presentations.

GCS-631. Advanced Computer-Aided Design Credit 3 (2-2)
This course focuses on developing knowledge and skill with computer software used with solid modeling and the use of computer software to generate these models. Emphasis will also be placed on the creation of wire-frame and surface models. Analysis, fabrication and documentation of these models will be addressed.

GCS-632. Graphic Animation Credit 3 (2-2)
This course deals with the creation and manipulation of computer generated geometric shapes and models. Topics include creation of 3D scenes, assignment of materials, lights and textures, keyframing, rendering, and animation.
GCS-633. Advanced Machine Design and Drafting
Credit 3 (2-2)
This course covers advanced drafting and design techniques associated with machine components and assembly. Topics include tool design and material selection, work-holding principles, design of jigs, fixtures and press working tools, inspection and gaging, joining processes, modular tooling, and economics of design.

GCS-634. Advanced Multimedia and Videography
Credit 3 (2-2)
This course provides advanced strategies and techniques in the development of multimedia presentations and videography. State of the art equipment will be used in addition to computers and software packages to produce professional presentations.

GCS-635. Advanced Principles of Graphic Communications Technology
Credit 3 (2-2)
Advanced principles in graphic reproduction. Study of color applications, photographic applications, design and pre-press techniques. Technical experiences in reproduction methods and quality control.

GCS-636. Electronic Imaging in Distance Learning
Credit 3 (2-2)
This course integrates the strategies and techniques of electronic imaging into distance learning applications. Areas of emphasis include Web page development and management unique to distance learning delivery systems for the Internet.

GCS-637. Industrial and Customer Relations in Graphic Communications
Credit 3 (3-0)
This course focuses on industrial and customer relations within the field of graphic communications. Responsibilities and duties of the manager and his/her relationship to higher-level supervisors, subordinates, associates and customers are examined. Emphasis is placed on developing skills essential for persuasive communication.

GCS-644. Advanced Architectural Drafting and Design
Credit 3 (2-2)
This course covers advanced drafting and design techniques associated with the building industries. Topics include the development of working drawings, site plans, elevations, sections, and details in accordance with building codes. Upon completion the student should be able to plan and develop architectural drawings that comply with accepted architectural standards and procedures.

GCS-667. Independent Studies in Technological Education I
Credit 3 (3-0)
This course involves intensive study in the field of technological education under the direction of a faculty advisor. Prerequisite: Approval of graduate studies coordinator.

GCS-668. Independent Studies in Technological Education II
Credit 3 (3-0)
This course involves intensive inquiry in the field of technological education under the direction of a faculty advisor. Prerequisite: Approval of graduate studies coordinator.

GCS-670. Electronic Imaging in Graphic Communication
Credit 3 (2-2)
Theory, principles and practices of electronic non-impact printing are investigated in class. Students will be given opportunities to explain, visit and utilize current non-impact printing systems through visits to industrial settings, classroom projects and special demonstrations.

GCS-731. Advanced Graphical Techniques
Credit 3 (2-2)
This course is designed to study the applications of American National Standards Institute (ANSI) and International Standards Organization (ISO) drafting standards, computer aided graphical problem-solving techniques, drafting methods in certain specialty areas, and different conventions related to tolerancing. Use of literature and research is expected.
GCS-733. Graphic Communications Organization and Management Credit 3 (3-0)
This course discusses formal and informal organizations, group dynamics, motivation, and managing conflict and change. Emphasis will be placed on different management practices and leadership styles as they relate to satisfaction and morale, organizational effectiveness, productivity, and profitability in the graphic communications industry.

GCS 771. Master Supervised Teaching I Credit 3(3-0)
Students will gain teaching experience under the mentorship of faculty who assist the students in planning for the teaching assignment, observe and provide feedback to the students during the teaching assignment and evaluate the students upon completion of the assignment.

GCS 772. Master Supervised Teaching II Credit 3(3-0)
Students will gain teaching experience under the mentorship of faculty who assist the students in planning for the teaching assignment, observe and provide feedback to the students during the teaching assignment and evaluate the students upon completion of the assignment.

GCS-788 Comprehensive Examination Credit 0(0-0)
Enrolling in this course is how one registers for the required comprehensive final examination.

TECH-670. Introduction to Workplace Training and Development Credit 3 (3.0)
Overview of the field of training and development. Management concerns related to organizing, operating, and financing training and development programs are discussed. Roles common to practitioners across the broad field of Human Resource Development are covered. Interpersonal perspectives and implications for the future are included.

TECH-671. Methods and Techniques for Workplace Training and Development Credit 3 (3.0)
Emphasis on the methods and techniques common to exemplary training programs. Designing learning programs and selecting appropriate media methods and resources using sound theoretical framework is the goal. Evaluation of programs and instruction is discussed.

TECH-717. Special Problems I Credit 3 (3-0)
This course is an advanced study in modern technology that deals with recent developments, trends, practices and procedures in industries. Learning activities include individual and group research and experimentation involving selection, design, development, and evaluation of technical reports and instructional materials.

TECH-718. Special Problems II Credit 3 (3-0)
Individual study related to modern technology including research and experimentation involving selection, design, development, and evaluation of instructional materials will be the focus of this course.

TECH-719. Seminar in Computer Aided Drafting and Design Credit 3 (2-2)
This course surveys the CADD software packages currently used in industrial and educational fields. It explores the uses and applications of these packages, and covers the transfer of data across platforms. Strengths of various software packages for special situations are emphasized.

Graduate Faculty

Department: Graphic Communication Systems and Technological Studies
Chairperson: Dr. Cynthia Gillispie-Johnson

Elazer J. Barnette, B.S., West Virginia State University; M.S., Ed.D., North Carolina State University, Professor
Elinor Blackwell, B. S. and M.S., NC A&T State University, Ed.D., North Carolina State University, Assistant Professor
Vincent W. Childress, B.S., M.S., Ph.D., Virginia Polytechnic Institute and State University, Professor
Robert Cobb, Jr., B.S., Virginia Polytechnic Institute and State University; M.S., North Carolina A&T State University; Ph.D., Virginia Polytechnic Institute and State University, Associate Professor
Ray J. Davis, B.S., University of Maryland Eastern Shore; M.S., Ph.D., Ohio State University, Professor and Associate Dean
Sonja Draper, B.S., East Carolina, M.S. North Carolina A&T State University, Ph.D., Virginia Polytechnical and State University, Assistant Professor
Dean Gilbert, B.S. and M.S. Appalachian State University, Ed.D., Clemson University, Assistant Professor
Cynthia C. Gillispie-Johnson, B.S., North Carolina A&T State University; M.S., University of North Carolina at Greensboro; Ph.D., Virginia Polytechnic Institute and State University, Professor and Chair
Tony Graham, B.S. NC A&T State University, M.S. and Ph.D., Morgan State University
Gwendolyn Johnson, B.S. Winston-Salem State University, M.S., North Carolina A&T State University, Ed.D., North Carolina State University
Mitchell Eugene Henke, B.S., Ohio State University, M.S., Bowling Green State University, Ph.D. Virginia Polytechnic and State University
Arjun Kapur, B.S., M.S., Punjab University; M.E., McGill University; Ph.D., Indian Institute of Technology, Assistant Professor
Devang P. Mehta, B.S., University of Bombay; M.A., DIT, University of Northern Iowa
Craig Rhodes, B.S., M.S., North Carolina A&T State University; Ph.D., University of Wisconsin-Stout, Associate Professor
OBJECTIVES

The Department of Human Performance and Leisure Studies (HPLS) offers an advanced graduate program of study leading to a Master of Science in Physical Education and a Master of Arts in Teaching Physical Education degrees. The purpose of the advanced program of study is to prepare public school practitioners and professionals to take leadership roles in the areas of teaching and research through an interdisciplinary and standards-based graduate curriculum. Specifically, the objectives of the program are the following:

1. To provide an advanced level of study in the areas of teaching and research in physical education and related fields.
2. To provide students with advanced competencies in developing, implementing, and evaluating quality programs of physical activities for a wide range of diverse populations.
3. To further develop technological competencies in physical education and related fields.

DEGREES OFFERED

Master of Science in Physical Education
Master of Arts in Teaching Physical Education

GENERAL PROGRAM REQUIREMENTS – MASTER OF SCIENCE (M.S.) IN PHYSICAL EDUCATION

The admission of students to graduate degree programs is consistent with the general admission requirements of the School of Graduate Studies. Students applying to graduate study in the Department of Human Performance and Leisure Studies must also satisfy the following criteria for admission in the program:

- A Bachelor’s degree in Physical Education or a related field from an accredited institution
- Three (3) letters of recommendation
- An overall undergraduate GPA of 2.60 for the non-teaching option and 2.8 for the teaching option
- Official scores on GRE (Graduate Record Examination) or the MAT (Miller Analogies Test) taken during the last five (5) years, and
- A goal statement
- An initial teaching “A” certificate for the teaching option
- A formal interview to be conducted by the graduate faculty
- An abbreviated curriculum vitae

DEPARTMENTAL REQUIREMENTS – MASTER OF SCIENCE (M.S.) IN PHYSICAL EDUCATION

Teaching Option - The Master of Science degree program in the HPLS department provides an advanced level of study in two options: teaching and non-teaching. The teaching option has three areas of concentration: (a) teacher education, (b) adapted physical education, and (c) sport psychology. Similarly, the non-teaching option has the same concentrations EXCEPT teacher education.

The student may elect to take thirty-six (36) hours of course work and write a thesis for three (3) credit hours in order to satisfy the requirements of thirty-nine (39) total hours. The student may also elect not to write a thesis and take an additional three (3) credit-hour research seminar course (HPED 798) to complete the required thirty-nine (39) total credit hours. In addition, the student must pass the comprehensive examination.

Non-Teaching Option - A student may complete the Master’s Degree in the non-teaching option without meeting state licensure requirements for teaching. This option is designed for individuals working in the field or related fields where a teaching license is not required. This option will not lead to any form of teacher licensure. The student must also pass the comprehensive examination.
GENERAL PROGRAM REQUIREMENTS – MASTER OF ARTS IN TEACHING (M.A.T.) PHYSICAL EDUCATION

Students applying to the Master of Arts in Teaching (M.A.T.) Physical Education program must satisfy the following admission requirements:

- An undergraduate degree earned from an accredited four-year institution of higher education
- Pass Praxis 1 or an overall undergraduate GPA of 2.5

DEPARTMENTAL REQUIREMENTS – MASTER OF ARTS IN TEACHING (M.A.T.) PHYSICAL EDUCATION

The M.A.T. degree program requires the completion of 39 graduate credit hours which are divided into two phases: Phase I (Certification Only Phase), and Phase II (M.A.T. Phase).

Phase I: (Certification Only Phase: 24 credit hours)
Students in Phase I must satisfy the pre-requisites in Kinesiology and Anatomy/Physiology. Students in this phase must complete 24 credit hours of graduate course work with a 3.0 cumulative Grade Point Average (GPA). In addition, they must apply for admission to the Teacher Education Program, pass Praxis II, complete the Physical Education Teacher Education (PETE) internship requirement, and obtain an initial teaching “A” certificate.

Phase II: (Master of Arts in Teaching Phase: 15 credit hours)
Students in Phase II must have completed Phase I with a cumulative overall GPA of 3.0, and obtained acceptable scores in Graduate Record Examination (GRE) or Miller Analogy Test (MAT). In this phase, students must pass the required 15 credit hours of advanced graduate course work with a 3.0 overall GPA. In addition, they must complete the capstone experience in the form of a research seminar project, and pass a comprehensive examination.

CAREER OPPORTUNITIES
A graduate degree in the field of Physical Education provides content for students preparing for careers in the public schools, post-secondary teaching and research, public service and further academic advancement.

GRADUATE COURSE OFFERRINGS

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPED 610</td>
<td>Health, Safety, and Liability in Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>HPED 611</td>
<td>Understanding Human Motor Development</td>
<td>3</td>
</tr>
<tr>
<td>HPED 612</td>
<td>Movement Forms and Motor Learning</td>
<td>3</td>
</tr>
<tr>
<td>HPED 613</td>
<td>Philosophical Foundation of Pedagogy in PE</td>
<td>3</td>
</tr>
<tr>
<td>HPED 615</td>
<td>PETE Internship (Period of 10 consecutive weeks)</td>
<td>3</td>
</tr>
<tr>
<td>HPED 700</td>
<td>Evaluation of Atypical Motor Performance</td>
<td>3</td>
</tr>
<tr>
<td>HPED 721</td>
<td>Current Problems and Trends in Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>HPED 723</td>
<td>Supervision in Health and Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>HPED 731</td>
<td>Exercise Physiology</td>
<td>3</td>
</tr>
<tr>
<td>HPED 732</td>
<td>Sport Psychology</td>
<td>3</td>
</tr>
<tr>
<td>HPED 733</td>
<td>Motor Learning and Performance</td>
<td>3</td>
</tr>
<tr>
<td>HPED 734</td>
<td>Applied Sport Psychology</td>
<td>3</td>
</tr>
<tr>
<td>HPED 735</td>
<td>Sport Psychology Practicum</td>
<td>3</td>
</tr>
<tr>
<td>HPED 760</td>
<td>Program Development in Adapted Physical Activity</td>
<td>3</td>
</tr>
<tr>
<td>HPED 761</td>
<td>Early Childhood Adapted Physical Activity</td>
<td>3</td>
</tr>
<tr>
<td>HPED 762</td>
<td>The Teaching of Adapted Physical Activity</td>
<td>3</td>
</tr>
<tr>
<td>HPED 784</td>
<td>Research Statistics for Physical Education</td>
<td>3</td>
</tr>
<tr>
<td>HPED 786</td>
<td>Scientific Foundations of Human Movement</td>
<td>3</td>
</tr>
<tr>
<td>HPED 798</td>
<td>Research Seminar</td>
<td>3</td>
</tr>
<tr>
<td>HPED 799</td>
<td>Thesis</td>
<td>3</td>
</tr>
</tbody>
</table>
DEPARTMENT OF HUMAN PERFORMANCE AND LEISURE STUDIES
GRADUATE COURSE DESCRIPTIONS

HPED 610. Health, Safety, and Liability in Physical Education Credit 3(3-0)
This course is designed to study research-based practices regarding health and safety issues, health-related fitness appraisals, and legal/liability principles pertaining to physical education activities. Emphasis is also focused on the effects of substance abuse on human performance and behavior. In addition, strategies in adapting health-related fitness appraisal activities for individuals with special needs will be examined.

HPED 611. Understanding Human Motor Development Credit 3(3-0)
This course is designed to develop the knowledge and skills necessary in understanding human motor development. Course content includes fundamental movements, movement concepts, growth and motor development, and the role of perception in movement. In addition, development and implementation of developmental movement programs, including assessment of motor ability will be equally emphasized with considerations for individuals with special needs.

HPED 612. Movement Forms and Motor Learning Credit 3(3-0)
This course is designed to address theoretical and practical issues pertaining to the understanding of humans’ development various dance and rhythmic skills, as well as analyses of individual, dual, and team sport skills. Moreover, emphasis is placed on humans’ learning of motor skills with respect to assessment and programming developmentally appropriate activities.

HPED 613. Philosophical Foundations of Pedagogy in Physical Education Credit 3(3-0)
This course is designed to address theoretical and practical application based pedagogical issues which impact physical education as it relates to its history, contemporary philosophical views, sociological factors, and psychological factors. Moreover, this course will address the issue of teacher accountability in the public schools and the impact of teachers’ philosophical views on the physical education curriculum.

HPED 615. PETE Internship (Period of 10 consecutive weeks) Credit 3(3-0)
This course is designed to facilitate students’ teaching and implementation of empirical-based pedagogical best practices; respond to learners’ exceptionalities/diversities; appropriate use of North Carolina course of study; use of technology to create supportive learning environments; participation in other school-based activities (e.g., Guidance activities, child accounting, cocurricular activities, parent-teacher associations, teachers’ meetings), which will aid in developing a Master teacher. In addition, student teachers must complete one semester of actual supervised teaching, which meets North Carolina Department of Public Instruction (NCDPI) required contact hours of teaching learning in the public schools.

HPED-700. Evaluation of Atypical Motor Performance Credit 3 (2-2)
This course is designed to study the various methods of assessing and evaluating atypical motor performance. Emphasis is placed on ecologically based data collection, interpretation, and instruction. A practicum is required.

HPED-721. Current Problems and Trends in Physical Education Credit 3 (3-0)
This course is designed for experienced teachers to address problems in teaching and coaching on all educational levels. Trends and the future direction of the profession will be addressed through research and class discussion.

HPED-723. Supervision in Health and Physical Education Credit 3 (3-0)
This course is an in depth-study of management theories and policies applicable to the administration of Health and Physical Education classes at all levels from elementary through higher education. The planning, implementing and evaluating of classroom activities are emphasized.

HPED-731. Exercise Physiology Credit (2-1)
This course is designed to give the student an understanding of the application of principles
and theories of physiology as it applies to the physical training and conditioning of athletes for sports participation.

HPED-732. Sport Psychology
Credit 3 (3-0)
This course is the study of current and classical theories of sport psychology as applied to human performance. Emphasis is placed upon motivation, attention, anxiety, human factors and cognitively based psychological skills training programs.

HPED-733. Motor Learning and Performance
Credit 3 (3-0)
This course is the study of current theories and principles of human motor behavior as applied to the acquisition and analysis of motor skills. Emphasis will be placed upon learning concepts, practice, arousal, methodology, transfer and distribution.

HPED-734. Applied Sport Psychology
Credit (3-0)
This course involves current research theories and practices in applied sport psychology, specifically sport specific psychology programs, generally involving psychological skills training with competitive sport participants.

HPED-735. Sport Psychology Practicum
Credit (2-2)
This course provides supervised experiences in the organization, administration and evaluation of applied sport psychology programs, generally involving psychological skills training with competitive sport participants.

HPED-742. Administration of Interscholastic and Intercollegiate Athletics
Credit 3 (3-0)
This course is designed to provide management theories and principles for the organization and administration of interscholastic and intercollegiate athletics. The components of budgeting, scheduling, staffing, coordination, planning and legal liability will be thoroughly discussed.

HPED-760. Program Development in Adapted Physical Activity
Credit 3 (2-2)
This course is designed to study the various approaches in developing adapted physical activity programs for individuals with disabilities, with emphasis on an ecological approach. Content focus is placed on inclusion, diversity, and non-categorical elements of program development, implementation, and evaluation. A practicum is required.

HPED-761. Early Childhood Adapted Physical Activity
Credit 3 (2-2)
This course focuses on the planning, implementation and evaluation of inclusive motor development programs for very young children with special needs. Emphasis is placed on current practices in assessment and programming, family involvement, and playground safety. A practicum is required.

HPED-762. The Teaching of Adapted Physical Activity
Credit 3 (1–4)
This course is designed to study and apply various instructional approaches to the teaching of adapted physical activity in an inclusive setting. Emphasis is placed on instructional styles and strategies, organizational techniques, and teaching effectiveness within an ecological framework. Internship is required.

HPED-784. Research Statistics for Physical Education
Credit 3 (3-0)
This course is designed to give the student a sound foundation in the principles and applications of various statistical methods as they relate to conducting and evaluating research in Physical Education. The course includes descriptive statistics, probability theory, sampling distribution, inferences about means and standard deviations, hypothesis testing, regression, correlation, Chi-square and non-parametric methods.

HPED-786. Scientific Foundations of Human Movement
Credit 3 (3-0)
This course is designed to discuss and explore the scientific base and approaches to studying human movement, including ethical decision making in human movement research.

HPED-798. Research Seminar
Credit 3 (3-0)
This course is designed to provide the students with a culminating experience by conducting
writing and presenting a research project to a forum of students and faculty. Prerequisites: CUIN 711, PHED 784, PHED 786 and completion of 50% of the course of studies.

HPED-799. Thesis
Credit 3 (3-0)
An in-depth research project in the area of physical education. Each student will have an advisor and Thesis Committee, in accordance with the procedures within the Graduate School, who will provide guidelines in the completion of the study. Each student will present his/her findings and will provide a successful defense before the Thesis Committee.

Graduate Faculty

Department: Human Performance and Leisure Studies

Interim Chair: Dr. Gloria Palma

Deborah J. Callaway, B.S., Virginia State College; M.Ed., Virginia Commonwealth University; Ed.D., Virginia Polytechnic Institute and State University; Associate Professor

Yongchul Chung, B.S., Seoul National University; M.S., Ph.D., UNC-Greensboro, Assistant Professor

Teresa Dail, B.S., Wake Forest University; M.S., University of North Carolina at Chapel Hill, Ph.D., University of North Carolina at Greensboro, Assistant Professor

Gloria M. Palma, B.S., University of the Philippines; M.S., Ph.D., Washington State University, Assistant Professor

Daniel Webb, B.S., Coppin State College; M.S., University of Wisconsin; Ph.D., Ohio State University, Assistant Professor
HISTORY

Olen Cole, Jr., Chairperson
324 Gibbs Hall
(336) 334-7831
coleo@ncat.edu

OBJECTIVES

The Master of Science program builds upon the knowledge and skills already mastered by teachers at the undergraduate level. The required 15 hours of advanced professional core courses and the 24 hours of courses in the content area provide opportunities for teachers to advance their knowledge of pedagogy and content. Courses in content and the professional education core are designed to connect with and enhance what teachers are actually doing in their classrooms. The role, use, integration, and application of technology in the planning and teaching process are also emphasized. The major goal is to produce social studies educators, teachers, leaders, and scholars, who are catalysts for learning.

DEGREE OFFERED

Master of Science - History Education

GENERAL PROGRAM REQUIREMENTS

In addition to the general requirements specified in the description of the degree program in Education, a student wishing to be accepted as a candidate for the degree of Master of Science in Education with a concentration in History must hold or be qualified to hold a Class A teaching certificate in History or Social Studies. If a person does not qualify for certification, appropriate undergraduate or graduate courses may be taken to correct this deficiency.

CAREER OPPORTUNITIES

The skills and knowledge learned in history and social science courses can lead to careers in education, journalism, business, archives and museums, international affairs, and government service, among others. The M.S. Degree Program in History Education prepares students for classroom teaching in secondary schools. Businesses also find that teacher education graduates make good human relations specialists, personnel directors, technical writers, sales managers, directors of training programs, and administrators.

DEPARTMENTAL REQUIREMENTS

To complete the requirements for the degree of Master of Science in Education with a concentration in History, the student may elect the thesis option or the non-thesis option. A comprehensive examination is required in History as well as in Education. Students must maintain a grade point average of 3.0.

coleo@ncat.edu

PROGRAM OF STUDY

Required History Content Area Courses 24 hours

HIST 735 Historiography (3)
HIST 610 Seminar in the History of Twentieth Century Technology (3)
HIST 730 Seminar in History (3)
HIST (United States History) (3)
HIST (European History) (3)
HIST (Courses/Non-Western History/minorities) (6)
Social Science Elective (Non-Thesis Option) (3)
HIST 750 Thesis in History (Thesis Option) (3)
Professional Education Core Courses 15 hours
1. CUIN 619 Learning Theories (3)
2. CUIN 721 Advanced Methods (3)
3. CUIN 729 Diversity Issues in K-12 Public Schools (3)
4. CUIN 711 Methods and Techniques of Research (3)
5. CUIN 728 Integrating Technology into the K-12 Curriculum (3)

OTHER REQUIREMENTS
1. Research Project or Thesis
2. Performance-Based Portfolio
3. Comprehensive Examination

PROGRAM OBJECTIVES OF THE MASTER OF SCIENCE IN EDUCATION WITH A CONCENTRATION IN HISTORY

Students in the M.S. degree program in History Education are provided the opportunity to:
1. Acquire advanced knowledge of pedagogical and thematic subject matter standards of the social studies curriculum.
2. Acquire advanced knowledge of major historiographical schools of thought and significant periods of history.
3. Become more aware of the contributions of historical and social science research to policy analysis and decision making.
4. Understand how students differ in their approaches to learning and be able to create teaching and learning strategies that address the needs of diverse learners.
5. Understand the impact of various groups, institutions, and nations on global history and development.
6. Improve performance and practice through self-evaluation, reflection, and applied research.
7. Understand how to select appropriate objectives consistent with state and local curriculum guidelines, the learning needs of students, and the standards established by the National Council of Social Studies and Interstate New Teacher Assessment and Support Consortium (INTASC).
8. To demonstrate instructional leadership as an individual and collaboratively.

History Courses
HIST 600 The British Colonies and the American Revolution
HIST 603 Civil War and Reconstruction
HIST 605 Twentieth Century Russian History
HIST 606 United States History, 1900-1932
HIST 607 United States History, 1932-Present
HIST 610 Seminar in the History of Twentieth Century Technology
HIST 615 Seminar in African-American History
HIST 616 Seminar in African History
HIST 617 Readings in African History
HIST 618 The African Diaspora
HIST 619 Modern China
HIST 620 Seminar in Asian History
HIST 621 Seminar in Latin American and Caribbean History
HIST 622 History of Asian Women
HIST 623 Topics in East Asian Culture
HIST 626 Revolutions in the Modern World
HIST 628 The Civil Rights Movement
HIST 629 Seminar on the History of Early Modern Europe
HIST 630 Seminar in European History, 1815-1914
HIST 631 Studies in Twentieth Century Europe, 1914 to the Present
HIST 633 Independent Study in History
HIST 701 Recent United States Diplomatic History
HIST 703 The Pacific War
HIST 712 Twentieth Century African-American History
HIST 730 Seminar in History
HIST 735 Historiography
HIST 740 History, Social Science, and Contemporary World Problems
HIST 750 Thesis in History

Geography Courses
GEOG 640 Topics in Geography of the United States and Canada
GEOG 641 Topics in World Geography

COURSE DESCRIPTIONS FOR HISTORY

HIST-600. The British Colonies and the American Revolution Credit 3 (3-0)
The planting and maturation of the English colonies of North America. Relationships between Europeans, Indians, and transplanted Africans, constitutional development, religious ferment, and the colonial economy are studied.

HIST-603. Civil War and Reconstruction Credit 3 (3-0)
Causes as well as constitutional and diplomatic aspects of the Civil War, the role of the African-American in slavery, in war, and in freedom; and the socio-economic and political aspects of Congressional Reconstruction and the emergence of the New South are studied.

HIST-605. Twentieth Century Russian History Credit 3 (3-0)
This is a reading, research, and discussion course that examines history of Twentieth century Russia with special emphasis on the Russian Revolution, the development of Communist society, the impact and legacy of Stalin, relations with the United States and other countries during the Cold War, the demise of the Soviet Union, and current problems facing post-Soviet Russia.

HIST-606. U.S. History, 1900-1932 Credit 3 (3-0)
Emphasizes political, economic, social, cultural and diplomatic developments from 1900 to 1932 with special attention to their effect upon the people of the United States and their influence on the changing role of the U.S. in world affairs.

HIST-607. U.S. Since 1932-Present Credit 3 (3-0)
With special emphasis on the Great Depression, New Deal, the Great Society, and the expanding role of the United States as a world power, World War II, Cold War, Korean and Vietnam conflicts are studied. Major themes include the origin, consolidation, and expansion of the New Deal, the growth of executive power, the origins and spread of the Cold war, civil liberties, and civil rights, and challenges for the extension of political and economic equality and the protection of the environment.

HIST-610. Seminar in the History of Twentieth Century Technology Credit 3 (3-0)
A reading, research, and discussion that investigates the development and, especially, the impact of major Twentieth century technologies. Attention will also be given to the process of invention, the relationship between science and technology, and the ethical problems associated with some contemporary technologies.

HIST-615. Seminar in African-American History Credit 3 (3-0)
This is a reading, research, and discussion course that concentrates on various aspects of the life and history of African-Americans. The emphasis is placed on historiography and major themes including nationalism, black leadership and ideologies, and economic development.

HIST-616. Seminar in African History Credit 3 (3-0)
Research, writing, and discussion on selected topics in African history.

HIST-617. Readings in African History Credit 3 (3-0)
(By arrangement with instructor.)
HIST-618. The African Diaspora Credit 3 (3-0)
This is an advanced reading, research, and discussion course on the historical experience of
people of African descent in a global context. It examines the worldwide dispersal and displacement
of Africans over time, emphasizing their migration and settlement abroad over the
past five centuries.

HIST 619. Modern China
The course will begin with attention to the main characteristics of traditional Chinese civilization. The focus of the
course will be on the political, social, economic, and intellectual changes in Chinese society from the 1840s to the
present

HIST-620. Seminar in Asian History Credit 3 (3-0)
Research, writing, and selected topics in Asian history.

HIST-621. Seminar in Latin American and Caribbean History Credit 3 (3-0)
This course requires research, writing, and discussion of selected topics in Latin American and
Caribbean History including, urban and rural conflicts, social revolution, race relations, problems
of underdevelopment, and contemporary issues.

HIST-622. History of Asian Women Credit 3 (3-0)
This course first briefly examines the conditions of Asian (especially South Asian and East Asian) women in
traditional societies and then focuses on the changes in women’s status in modern times (since 1800). It covers
primarily the following topics: women and economic modernization (especially the impact of industrialization on
women), the impact of the introduction of Western ideas (such as feminism) on women, women and wars
(revolutions)-especially in China, Korea, and Vietnam, women and crimes, women’s political participation, and
gender relations.

HIST-623. Topics in East Asian Culture Credit 3 (3-0)
This course first aims at illuminating some key features of East Asian culture, especially in modern times. It is
concerned with East Asians’ belief on a variety of issues (e.g., human relations, man-nature relations, state-society
relations, and health) and the changes of these beliefs in the context of Western influence. Considerable attention will
be given to such major intellectual schools as Confucianism, Daoism, and Buddhism.

HIST-626. Revolutions in the Modern World Credit 3 (3-0)
A seminar course stressing comparative analysis of revolutions and revolutionary movements
in the Unites States, France, Russia, China, Cuba, and Iran. Students will also evaluate theories
of revolution in light of historical examples.

HIST-628. The Civil Rights Movement Credit 3 (3-0)
From original research, class lectures, and discussions, students will become familiar with the
nature of the Civil Rights Movement; will evaluate its successes and failures; and will analyze
the goals and tactics of each major participating Civil Rights organization. Students will also
evaluate the impact of the Civil Rights Movement on American society.

HIST-629. Seminar on the History of Early Modern Europe Credit 3 (3-0)
Through extensive readings, discussion, research, and writing, students will examine selected
topics of enduring importance in the history of Europe from the Renaissance through the
French Revolution.

HIST-630. Studies in European History, 1815-1914 Credit 3 (3-0)
Intensive study of selected topics in Nineteenth Century European history.

HIST-631. Studies in Twentieth Century Europe, 1914-Present Credit 3 (3-0)
This course offers an intensive study of key topics in Twentieth century European history,
including World Wars I and II, the Russian Revolution, Hitler and the Holocaust, the
Depression, the Cold War and bipolarism, the Welfare State, the Common Market, the collapse
of Communism in Eastern Europe, and current problems.
HIST-633. Independent Study in History

(3-0)

HIST-701. Recent United States Diplomatic History

This course examines episodes in the history of American foreign relations that were especially important in influencing persistent patterns of this nation’s role in international relations. Possible examples studied: Pearl Harbor, the Cold War, Korean War, Cuban missile crisis, Vietnam, nuclear arms limitation, and black Africa.

HIST-703. The Pacific War

This course examines the origins, conduct, and consequences of the Pacific War, which was an important part of World War II. The course will discuss the rise of Japan as a world power and its expansion in East Asia, particularly in China, and Southeast Asia. The course will also explore why and how Japan came into military conflict with the United States in the Pacific region, which resulted in the collapse of the Japanese colonial empire. (F;S;SS)

HIST-712. Twentieth Century African-American History

This course involves research, reading, discussion, and analysis of major facets of African-American life in the United States from 1900 to the present. It requires a major research paper.

HIST-730. Seminar in History

Topics to be selected by students and instructor. Includes a major research project.

HIST-735. Historiography

This course will examine historians and their philosophical and methodological approaches to the study of history and recent developments in analysis and theory. Overviews of the fundamental issues and debates in the fields of history will be discussed. Basic computer skills will also be emphasized.

HIST-740. History, Social Science, and Contemporary World Problems

Readings, discussions, and reports on the relationships between history and the social sciences as a whole, as well as their combined roles in dealing with contemporary world problems.

HIST-750. Thesis in History

Thesis work will be done with the appropriate instructor in accordance with field of interest.

CUIN-725. Problems and Trends in Teaching the Social Sciences

Current strategies, methods, and materials for teaching the social sciences. Emphasis on innovations, evaluation and relation to learning. Provision for clinical experiences.

COURSE DESCRIPTIONS FOR GEOGRAPHY

GEOG-640. Topics in Geography of the United States and Canada

Selected topics in cultural geography of the United States and Canada are studied intensively. Emphasis is placed upon individual reading and research and upon group discussion.

GEOG-641. Topics in World Geography

Selected topics in geography are studied intensively. Concern is for cultural characteristics and their interrelationships with each other and with the habitat. Emphasis is upon reading, research, and discussion.
Graduate Faculty

Department: History
Chair: Dr. Olen Cole, Jr.

Millicent Brown, B.A., The College of Charleston; M.Ed., The Citadel, Ph.D., Florida State University; Associate Professor
Olen Cole, Jr., B.A., M.A., California State University at Fresno; Ph.D., University of North Carolina at Chapel Hill; Professor and Chair
Margaret L. Barrett, B.S., University of Southern Mississippi; M.A., Southern Illinois University; Ph.D., University of Missouri at Columbia; Associate Professor
Fuabeh P. Fonge, B.A., The University of Yaounde; M.A., Georgetown University; Ph.D., Howard University; Associate Professor
Karen Hornsby, B.A., California State University-Sacramento; M.A., Ph.D., Bowling Green State University; Assistant Professor
Peter V. Meyers, B.A., Wesleyan University; M.A., Ph.D., Rutgers University; Director of University Honors Program and Professor
Conchita F. Ndege, B.F.A., Xavier University; M.A., Ph.D., Howard University; Professor
Thomas E. Porter, B.A., Loyola College; M.A., Ph.D., University of Washington; Associate Professor
James A. Wood, B.A., Tufts University; M.A., Ph.D., University of North Carolina at Chapel Hill; Associate Professor
Yunqui Zhang, B.A., Qufu Normal University; M.A., Ph.D., University of Toronto; Assistant Professor
Porter, Thomas, B.A., Loyola College; M.A., Ph.D., University of Washington; Professor
Williamson, Sandrea T., B. A., Johnson C. Smith University; M.A., University of Illinois; Instructor
Roberto, Michael, B.A., Adelphi University; M.A., University of Rhode Island; Ph.D., Boston College; Assistant Professor
OBJECTIVES

The objectives of the Department of Human Development and Services are to prepare individuals for professional roles in Adult Education, Counseling, and School Administration. Departmental studies include philosophical, theoretical, and methodological foundations for adult educational and counseling practices; practical examination of human development and learning through the life span, supervised experience in practice settings and leadership preparation for schools and other educational organizations in a diverse and technological society.

Departmental graduates pursue professional careers within a diversity of human services settings, including schools, post-secondary and higher education, public and private counseling centers, rehabilitation agencies, community education and development, services administration, corrections, human resource development/training, health education, and university extension programs. School Administration graduates work in administrative positions at the school building level, and/or assume positions with local, state, and national organizations that focus on educational issues in professional development, curriculum, research or policy making. Graduates of School Administration are eligible for licensure from the North Carolina State Department of Public Instruction (SDPI) and may qualify the individual for administration certification in other states.

Although many participants are enrolled in full-time graduate study, the Department welcomes practicing professionals who choose to pursue their studies on a part-time basis. Course work in the Department is generally offered in the evenings to accommodate the professional development needs of practicing adult educators, counselors, and school administrators.

DEGREES OFFERED

Master of Science Degree in Adult Education
Master of Science Degree in Counselor Education
Master of Science Degree in Human Resources (Community/Agency)
Master of Science Degree in Human Resources (Rehabilitation Counseling)
Master of Science Degree in School Administration

GENERAL PROGRAM REQUIREMENTS

The Department of Human Development and Services at North Carolina A&T State University accepts and reviews applications for admission twice a year. Deadlines for counseling applications are April 1st for fall admissions and November 1st for spring admissions. Adult Education deadlines are ongoing for fall and spring admissions.

School Administration program deadlines are March 1st for fall admissions and November 1st for spring admissions. Persons applying for graduate study in the Department must obtain an application for admittance from the School of Graduate Studies. Prospective kirk@ncat.edu students must complete and forward the application including submission of three letters of recommendation to the Graduate School.

The applicants packet will be reviewed by the Graduate School and the admissions committee of the Department of Human Development and Services. Applicants may be requested to participate in a pre-admissions interview with departmental faculty. The admissions decision is made at the department level, and is based on the recommendation of the admissions committee and approval by the Departmental Chairperson.

Persons applying for graduate study within Departmental Programs should have an overall undergraduate GPA of 3.0 or higher on a 4 point system; and 2.8 on a 4.0 scale for School Administration. Primary factors in the admissions decision include academic background,
demonstrated professional and volunteer experience appropriate to Departmental programs of study, letters of recommendation or reference forms and official transcripts of all prior academic work.

The GRE is not required for admission unless the Departmental Admissions Committee recommends a student take it. However, persons applying for graduate study in counseling may be required to take the Graduate Record Examination (GRE) and have these scores submitted to the graduate school as a part of the application process, if asked to do so by the Departmental Admissions Committee. GRE scores will be considered in the overall admissions decision. The GRE requirement does not apply to adult education master’s candidates. If approved, applicants who do not meet minimum GPA requirements may be admitted to Departmental programs on the weight of other factors. School Administration applicants are required to present GRE or MAT (Miller Analogies Test) scores that are not more than five (5) years old. Test of English as a Foreign Language is required for international students.

Applicants for graduate study in Adult Education who have creditable professional and/or volunteer experience in adult education practice are encouraged to submit a brief portfolio in addition to, and in support of, the resume. The portfolio would include samples of original work (i.e. workshops, presentations, publications) from employment or volunteer experience (i.e. voluntary organizations, church). The portfolio will be considered in the overall admissions decision as evidence of applicable professional and volunteer experience.

For a complete copy of the admissions policy, contact the department office. Faculty recommendations are preferred; however, employer recommendations may be submitted if you are unable to obtain a faculty recommendation. A current resume and professional portfolio should be submitted to:

North Carolina A&T State University
School of Graduate Studies
ATTN: Admissions
120 Gibbs Hall
Greensboro, NC 27411

DEPARTMENT REQUIREMENTS

Adult Education majors must successfully complete a minimum of 36 credit hours of approved graduate study. The program of study is composed of a professional core curriculum consisting of 21 graduate semester hours, including a faculty supervised practicum experience, and a minimum of 15 semester hours in a research or practice concentration. The concentration entails graduate research and cognate studies in an adult education specialty (thesis option) or an adult education practice concentration (non-thesis option). The concentration (thesis or non-thesis) is determined by the participant in collaboration with his or her faculty advisor and is subject to approval by the Department Chair. Practice concentrations are currently designated in Community Education, Counseling, Higher Education, and Instructional Technology.

As a culminating experience, the Research Concentration (Thesis Option) participant must research and write a masters’ thesis in the field of adult education under the supervision of his/her major advisor, and defend it before a departmental Thesis Research Committee. Practice Concentration (Non-Thesis Option) participants must complete a four-hour master’s comprehensive examination administered by the Department. In addition to serving Departmental master’s candidates, students enrolled in master’s programs other than Adult Education, as well as holders of master’s degrees who are not currently engaged in graduate study, may enroll, with administrative approval, in Adult Education professional core courses or concentrations to augment their studies and professional development.

Counseling majors must complete 60 hours of graduate work with the Rehabilitation Counseling track. The program of study is composed of a professional core curriculum consisting of 48 graduate semester hours, including a faculty supervised practicum experience and two 300 hour internships, in addition to a minimum of 12 semester hours of electives. The electives allow graduate students the opportunity to develop specialties in the counseling profession. Students will not be allowed to take the Counseling Comprehensive Examination unless all professional core courses have been taken excluding HDSV 765, 780 and 790. There are four tracks as options in the counseling curriculum. The Community/Agency Counseling track prepares students for a variety of counseling careers in the public and private
sector, including post-secondary education settings. The School Counseling track prepares students for counseling positions in elementary, middle, and high schools. The Human Resources Rehabilitation Counseling track prepares students for positions in a variety of rehabilitation settings.

The Human Resources (Rehabilitation Counseling) program is designed to prepare culturally competent counselors who specialize in working with persons with physical, developmental, cognitive, psychological, and neurological disabilities and/or illness. The 48 hour counseling program is accredited by the Council on Rehabilitation Education and has the following objectives:

- To equip students with knowledge, skills, and experiences to empower persons with disabilities through the counseling process
- To increase the student’s knowledge of the role and functions of rehabilitation counselors
- To equip students with unique skills to provide effective rehabilitation counseling services within a cultural context
- To enhance the student's knowledge of the needs and associated resources to meet the evolving needs of persons with disabilities
- To prepare students to obtain professional licensure and certification if the profession of rehabilitation counseling
- To prepare student’s to address professional issues in Rehabilitation Counseling through professional associations, publications, and professional development
- To prepare students to work in a variety of public and private settings in the rehabilitation counseling profession

Graduates of the Rehabilitation Counseling track pursue credentials as a Certified Rehabilitation Counselor (CRC), a National Certified Counselor (NCC), and a Licensed Professional Counselor (LPC). Rehabilitation Counselors are employed in the following settings: (a) public/private rehabilitation agencies, (b) community rehabilitation programs, (c) private practice, (d) non-profit rehabilitation agencies, (e) rehabilitation hospitals, (f) correctional facilities, (g) mental health centers, (h) independent living centers, (i) half way houses, and (j) substance abuse facilities. The Rehabilitation Counseling program offers a 12 hour concentration in Rehabilitation Administration for students desiring additional preparation for leadership roles within rehabilitation settings. The program also offers a 12 hour Certificate Program in Rehabilitation Counseling and Behavioral Addictions for those currently enrolled in the 48 hour program.

The Master of School Administration Degree Program is designed to prepare individuals to lead schools and other educational organizations in a diverse and technological society. Completion of this program leads to eligibility for licensure from the North Carolina State Department of Public Instruction and may qualify the individual for administration certification in other states. Graduates of this program will work in administrative positions at the school building level, and/or assume position with local state and national organizations that focus on educational issues in professional development, curriculum, research or policy making.

Program Objectives

The objectives of the program are to:
- Prepare leaders who are visionary, reflective, and collaborative managers with schools, business and the community.
- Prepare leaders for school administration and leadership in local, state, regional, and national educational organizations.
- Prepare leaders who know how to conduct research and use data analysis in problem solving and decision-making.
- Prepare leaders who demonstrate knowledge of curriculum, assessment, use of technology, and are reflective in their practice.
- Prepare leaders with the skills to respond to gender, equity, and quality issues.
- Prepare leaders who are ethically sensitive and open-minded.
- Prepare leaders who are responsive to social, political, and economic change.
• Provide individuals the opportunity to demonstrate leadership skills, apply theoretical knowledge and demonstrate appropriate dispositions.

Degree

All students enrolled in the Master of School Administration Degree Program must successfully complete 42 hours of study including 30 hours in the major and 12 hours in a field based internship and internship seminar. A maximum of 6 hours of graduate transfer credits with a grade of “B” or higher may be accepted toward completion of the degree. Transfer credits must be at the graduate level for a grade, within the last five years, and may not have been used to fulfill the requirements for another master’s degree.

Students admitted to the Master of School Administration Degree Program will be assigned to a cohort group through the registration process. There will be separate cohort groups for full-time and extended time students. Students may choose either a full-time or extended time program of study. Full-time students must complete the program within a two-year period, including the yearlong internship. Extended time students must complete the program within a three-year period including summers and the yearlong internships.

Admission Requirements

• Submit a formal application to the School of Graduate Studies, North Carolina Agricultural and Technical State University.
• Hold a Bachelor of Arts or Bachelor of Science degree from an accredited college or university in this country or the equivalent in an accredited institution outside the United States.
• Have an undergraduate grade point average of 2.8 on a 4.0 scale.
• Present GRE or MAT (Miller Analogies Test) scores that are not more than five (5) years old.
• Have a minimum of four (4) years of successful teaching experience and hold a Performance based North Carolina Teaching Certificate.
• Provide three letters of academic recommendations.
• Participate in an interview to determine knowledge of relevant education issues, insight into problems of schooling, and level of oral communication skills.
• Present a portfolio of educational and professional artifacts.
• Provide a writing sample in response to a leadership case study problem.

Financial Assistance

The North Carolina Principal Fellows Program is a scholarship loan program funded by the North Carolina General Assembly and based upon academic merit (financial need is not a consideration) to assist individuals in earning the master’s degree in school administration in preparation for a career in school administration.

Each scholarship loan will provide up to a two-year scholarship in the amount of twenty thousand dollars ($20,000) per year to support students who enroll in and complete a full-time two-year masters degree program in school administration at a participating institution.

Internship Requirements

You must be enrolled as a full-time graduate student (9 hours minimum) and serve as a full-time intern in a public school during the second year as a Principal Fellow. While serving as an intern, Principal Fellows receive a stipend, in addition to the scholarship loan, equal to the 0-4 steps on the state salary schedule for assistant principals (contingent on funding from the General Assembly).
Information may be obtained by contacting:
North Carolina Principal Fellows Program
P.O. Box 2688
Chapel Hill, North Carolina 27515-2688
(919) 962-4575

245
PROGRAM OF STUDY FOR THE M.S. IN ADULT EDUCATION

<table>
<thead>
<tr>
<th>Professional Core (21 credit hours)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADED 707 Foundations of Adult Education</td>
<td>3</td>
</tr>
<tr>
<td>ADED 708 Methods in Adult Education</td>
<td>3</td>
</tr>
<tr>
<td>ADED 709 Adult Development and Learning</td>
<td>3</td>
</tr>
<tr>
<td>ADED 700 History and Philosophy of Adult and Continuing Education</td>
<td>3</td>
</tr>
<tr>
<td>ADED 701 Organization, Administration, & Supervision of Adult Education Programs</td>
<td>3</td>
</tr>
<tr>
<td>ADED 716 Qualitative Research in Adult and Continuing Education</td>
<td>3</td>
</tr>
<tr>
<td>ADED 702 Practicum and Seminar in Adult Education</td>
<td>3</td>
</tr>
</tbody>
</table>

(50 contact hours or more)

Prerequisites: completion of 21 credit hours including 15 hours of professional core courses, or permission of the instructor.

<table>
<thead>
<tr>
<th>Concentration (15 hours minimum)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Concentration (Thesis Track)</td>
<td></td>
</tr>
<tr>
<td>HDSV 707 Applied Research</td>
<td>3</td>
</tr>
<tr>
<td>Comparable Research Design Course</td>
<td>3</td>
</tr>
<tr>
<td>ADED 705 Thesis Research in Adult Education</td>
<td>6</td>
</tr>
<tr>
<td>Approved Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

In lieu of taking the master’s comprehensive examination, thesis students will defend their completed research before their respective faculty advisory committee.

Practice Concentration (Non-Thesis Track)

Electives to comprise a practice concentration 15

In consultation with his/her advisor, the student may elect to pursue a designated practice concentration (below), or develop a unique concentration from among university-wide course offerings that is tailored to his/her career interests and goals.

PRACTICE CONCENTRATIONS

Adult Education

In consultation with their advisors, non-thesis students individually develop practice concentrations within adult education.

Recommended Courses for Practice Concentrations

<table>
<thead>
<tr>
<th>Community Education</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADED 771 Program Development in Community Education</td>
<td>3</td>
</tr>
<tr>
<td>ADED 772 Program Management in Community Education</td>
<td>3</td>
</tr>
<tr>
<td>ADED 711 Gerontology</td>
<td>3</td>
</tr>
<tr>
<td>ADED 712 Developmental Adult Education</td>
<td>3</td>
</tr>
<tr>
<td>One Approved Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Higher Education</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADED 776 Principles of College Teaching</td>
<td>3</td>
</tr>
<tr>
<td>ADED 714 The Community College</td>
<td>3</td>
</tr>
<tr>
<td>ADED 778 Student Personnel Services</td>
<td>3</td>
</tr>
<tr>
<td>ADED 773 Leadership</td>
<td>3</td>
</tr>
<tr>
<td>One Approved Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Resource Development</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADED 710 Foundations of Human Resource Development</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 612 Instructional Design 3</td>
<td>3</td>
</tr>
<tr>
<td>CUIN 714 Instructional Technology Services for Business and Industry</td>
<td>3</td>
</tr>
<tr>
<td>TECH 670 Introduction to Workplace Training and Development</td>
<td>3</td>
</tr>
<tr>
<td>TECH 671 Methods and Techniques of Workplace Training and Development</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instructional Technology</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUIN 742 Instructional Design</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Offerings in Adult Education

ADED 700 History and Philosophy of Adult and Continuing Education 3 (3-0)
ADED 701 Organization, Administration and Supervision of Adult/Continuing Education Programs 3 (3-0)
ADED 702 Practicum and Seminar in Adult Education 3 (1-4)
ADED 703 Seminar on Contemporary Issues in Adult Continuing Education 3 (3-0)
ADED 704 Independent Study 3 (3-0)
ADED 705 Thesis Research in Adult Education 6 (6-0)
ADED 706 Special Problems in Adult Education 3 (3-0)
ADED 707 Foundations of Adult Education 3 (3-0)
ADED 708 Methods in Adult Education 3 (3-0)
ADED 709 Adult Development and Learning 3 (3-0)
ADED 710 Foundations of Human Resource Development 3 (3-0)
ADED 711 Social Gerontology 3 (3-0)
ADED 712 Developmental Adult Education 3 (3-0)
ADED 713 Literacy in the Black Diaspora 3 (3-0)
ADED 714 The Community College and Postsecondary Education 3 (3-0)
ADED 715 Women in Adult Education 3 (3-0)
ADED 716 Qualitative Research in Adult Education and Continuing Education 3 (3-0)
ADED 759 Computer Applications in Adult Education 3 (3-0)
ADED 771 Program Development: Community Education 3 (3-0)
ADED 772 Program Management: Community Education 3 (3-0)
ADED 773 Leadership 3 (3-0)
ADED 774 The Changing Environment of Human Resources Development 3 (3-0)
ADED 775 Learning Interventions for Human Resources Development 3 (3-0)
ADED 776 Principles of College Teaching 3 (3-0)
ADED 777 Seminar in Higher Education 3 (3-0)
ADED 778 Student Personnel Services 3 (3-0)
ADED 779 Technical Education in Community Junior Colleges 3 (3-0)
ADED 785 A Independent Readings in Education I 1 (0-2)
ADED 786A Independent Readings in Education II 2 (0-4)
ADED 787A Independent Readings in Education III 3 (0-6)
ADED 790A Seminar in Education Problems 3 (3-0)

COURSE DESCRIPTIONS IN ADULT EDUCATION

ADED-700. History and Philosophy of Adult and Continuing Education Credit 3 (3-0)
This is a study of historical and philosophical foundations and thought utilized in the analysis of adult education teaching and learning. The evolution of adult education as a discipline is studied from a multicultural perspective.

ADED-701. Organization, Administration and Supervision of Adult/Continuing Education Programs Credit 3 (3-0)
This course is an examination of theories, concepts and practices as they relate to administrative functions: planning, organizing, staffing, financing, motivating, decision-making, evaluating and delegating in an Adult Education organization.

ADED-702. Practicum and Seminar in Adult Education Credit 3 (1-4)
This course engages participants in a supervised field experience with an agency, business, institution or organization, to enable praxis of adult education theory and methodology. The seminar provides for shared reflection, integration, and discussion of theoretical, methodological implementation and experiences. The practicum experience consists of (50) clock hours.
This course is graded as a pass/fail. Prerequisites: Twenty-one (21) graduate credit hours including 18 hours of professional core courses, or permission of instructor.

ADED-703. Seminar on Contemporary Issues in Adult Continuing Education Credit 3 (3-0)
This course is integrative in nature, thereby offering the student an opportunity to synthesize

ADED-704. Independent Study Credit 3 (3-0)
This course permits a participant to develop and execute a learning contract with the instructor to analyze a problem in adult education through supervised study, outside the classroom setting. The problem may be selected from the scholarly literature of adult education or the professional workplace. Prerequisites: Permission of the instructor.

ADED-705. Thesis Research in Adult Education Credit 6 (6-0)
Original graduate level research in adult education is carried out by the adult learner under the supervision of the thesis research committee chairperson and leading to completion of the Master’s Thesis. This course is available only to thesis option participants. This course is graded as pass/fail. Prerequisites: Thirty (30) graduate credit hours including ADED 716 or HDSV 770 or comparable research design course, or permission of the instructor.

ADED-706. Special Problems in Adult Education Credit 3 (3-0)
Special topics, individual and group study projects, research, workshops, seminars, travel study tours and organized visitations in areas of adult education planned and agreed upon by participating students may be included in this course.

ADED-707. Foundations of Adult Education Credit 3 (3-0)
This course will introduce and address the philosophical, sociological and psychological foundations of adult education, and develop a view of the subject as a broad, diverse, and complex field of study, research, and professional practice. Students will survey many institutions, programs, and individual activities. The range of methods and materials used to enable adults to learn will be discussed.

ADED-708. Methods in Adult Education Credit 3 (3-0)
This course addresses adult education methodology and learning in formal, non-formal, and informal settings. Attention is given to adult education philosophical perspectives and teaching styles and their implications for methodology.

ADED-709. Adult Development and Learning Credit 3 (3-0)
The social and psychological contexts of learning, motivation and educational participation will be examined. Major theories of adult development and learning, and their implications for professional practice will be explored through readings, small group and whole class discussion, and inquiry team projects. This course is appropriate for any educators and human services professionals who work with adults including college, university, and other postsecondary educators and counselors, adult secondary educators, community services providers, trainers and human resource developers.

ADED-710. Foundations of Human Resource Development Credit 3 (3-0)
Human Resource Development (HRD) is concerned with the human resources within both public and private sector organizations, and is defined as the integrated use of employee training and development, organization development, and career development, to improve individual, group, and organizational effectiveness in attaining strategic goals and objectives. This course addresses concepts, practices, and issues in HRD with a focus on workplace learning organizational analysis.

ADED-711. Social Gerontology Credit 3 (3-0)
This is the study of cultural, sociological and economic factors affecting older adults and their implications for adult education practice.

ADED-712. Developmental Adult Education Credit 3 (3-0)
This course surveys the complex and growing field of developmental adult education and will
include topics relevant to collegiate remedial education, adult literacy, basic and secondary education. English as a second language, and working with the learning disabled adult.

ADED-713. Literacy in the Black Diaspora
Credits 3(3-0)
This is an historical overview of literacy excellence and achievements evolving with the African adult. This cultural reality provides a contextual frame for the study of literacy initiatives within the United States and the Black Diaspora.

ADED-714. The Community College and Postsecondary Education
Credit 3 (3-0)
This is a study of the purposes, organization, functions, current trends and historical evolution of the comprehensive community college, and its role within adult, community and higher education. The North Carolina Community College System is emphasized.

ADED-715. Women in Adult Education
Credits 3(3-0)
This course examines the progression of women professionals in the adult education discipline within a cultural and socio-political context. The emphasis is placed on initial exclusion, marginalization, and evolving participation, scholarship and leadership.

ADED-716. Qualitative Research in Adult and Continuing Education
Credits 3(3-0)
This course presents an overview of qualitative research methods. Learners are introduced to various qualitative research methods such as historical analysis, case study methods, life histories and ethnography. Data collection and analysis techniques are studied and utilized to present a research project.

ADED-759. Computer Applications in Adult Education
Credit 3 (3-0)
Experiences will be provided in various computer and software application for adult and higher education.

ADED-771. Program Development: Community Education
Credit 3 (3-0)
This course is a study of community needs assessment, community program design, program budgeting, grant writing, planning, and infusion of education that is multicultural into the community education curriculum.

ADED-772. Program Management: Community Education
Credit 3 (3-0)
This course is the study of organization and governance of community education, program implementation, direction, supervision and evaluation.

ADED-773. Leadership
Credit 3 (3-0)
This course introduces the adult learner to leadership theories, styles, ethics, values, principles, and perspectives. Case studies and other methods are used to examine leadership situations as a means of demonstrating and exercising practical applications of the concepts studied.

ADED-774. The Changing Environment of Human Resource Development
Credit 3(3-0)
This course examines the organization as a system influenced by external and internal environmental factors. Selected theories of organizational behavior, organizational culture and organizational change will be examined. Learners will develop an in-depth knowledge of the dynamic environment in which the human resource development professional operates. Prerequisites: ADED 710 Foundations of Human Resource Development or the permission of the instructor.

ADED-775. Learning Interventions for Human Resource Development
Credits 3(3-0)
Typical programs and learning supports provided in public and private sector workplaces will be examined. Human Resource Development interventions that support employee learning, including needs assessment, implementation and evaluation, will be practiced and analyzed. Prerequisites: ADED 710 Foundations of Human Resources Development or the permission of the instructor.

ADED-776. Principles of College Teaching
Credit 3 (3-0)
This course uses an exploratory approach to the framework and mechanics required to teach successfully at the college level. It addresses skills, methods, course development and syllabus design, the evaluation of learning, diversity appreciation, creativity and the integration of technology, and trends in distance education.
ADED-777. Seminar in Higher Education
Credit 3 (3-0)
This course is a synthesis of current research in higher education relating to administration, curriculum, and faculty development.

ADED-778. Student Personnel Services
Credit 3 (3-0)
This course is an analysis of student development programs in post-secondary institutions, including pre-admission; education; vocational and personal counseling; career guidance services; attitude and interest assessment; student affairs, rights, and responsibilities and financial aid.

ADED-779. Technical Education in Community Junior Colleges
Credit 3 (3-0)
This course offers techniques in identifying community needs and in planning curricula and courses for technical/vocational education.

ADED-785A Independent Readings in Education I
Credit 1 (0-2)
This course includes individual study and selected readings in consultation with an instructor. Prerequisites: 24 hours of graduate credit.

ADED-786A Independent Readings in Education II
Credit 2 (0-4)
This course involves individual study and selected readings in consultation with an instructor. Prerequisites: 24 hours of graduate credit.

ADED-787A Independent Readings in Education III
Credit 3 (0-6)
This course involves individual study and selected readings in consultation with an instructor. Prerequisites: 24 hours of graduate credit.

ADED-790A Seminar in Education Problems
Credit 3 (3-0)
This course includes intensive study, investigation, or research in selected areas of adult education. Prerequisites: 24 hours graduate credits.

Program of Study for the M.S. in School Counseling
Credit Hours

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSV 602</td>
<td>Human Development</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 610</td>
<td>Counseling Services</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 640</td>
<td>Professional Orientation and Ethics in Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 650</td>
<td>Theories of Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 706</td>
<td>Organization and Administration of Counseling Programs</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 712</td>
<td>Counseling School Age Children</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 735</td>
<td>Counseling Methods (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 740</td>
<td>Appraisal</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 750</td>
<td>Group Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 760</td>
<td>Career Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 765</td>
<td>Practicum (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 770</td>
<td>Applied Research in Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 780</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 790</td>
<td>Internship II</td>
<td>3</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSV 799</td>
<td>Internship Land II</td>
<td>3</td>
</tr>
</tbody>
</table>

Electives* 15

Total 60 Hours

Footnote::

Recommended Electives:

CUIN 701 Philosophy of Education 3
CUIN 720 Curriculum Development 3
SPED 661 Psychology of Exceptional Individuals 3
Or any 600 level or above Special Education course
Program of Study for the M.S. in Human Resources (Community/Agency)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSV 602</td>
<td>Human Development</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 610</td>
<td>Counseling Services</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 640</td>
<td>Professional Orientation and Ethics in Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 650</td>
<td>Theories of Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 710</td>
<td>Community/Agency Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 735</td>
<td>Counseling Methods (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 736</td>
<td>Multicultural Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 740</td>
<td>Appraisal</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 750</td>
<td>Group Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 760</td>
<td>Career Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 763</td>
<td>Family Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 765</td>
<td>Practicum (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 770</td>
<td>Applied Research in Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 780</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 790</td>
<td>Internship II</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 799</td>
<td>Internship I, and II</td>
<td>6</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60 Hours</td>
</tr>
</tbody>
</table>

Program of Study for the M.S. in Human Resources (Rehabilitation Counseling)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSV 602</td>
<td>Human Development</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 612</td>
<td>Foundations of Rehabilitation Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 650</td>
<td>Theories in Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 735</td>
<td>Counseling Methods (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 736</td>
<td>Multicultural Counseling</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 738</td>
<td>Psychological Aspects of Disability</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 740</td>
<td>Appraisal</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 743</td>
<td>Medical Aspects of Disability</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 750</td>
<td>Group Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 760</td>
<td>Career Counseling (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 764</td>
<td>Case Management</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 765</td>
<td>Practicum (Lab)</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 770</td>
<td>Applied Research</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 775</td>
<td>Job Development and Placement</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 780</td>
<td>Internship I</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 790</td>
<td>Internship II</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 799</td>
<td>Internship I, and II</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 HOURS</td>
</tr>
</tbody>
</table>

Rehabilitation Administration Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECH 671</td>
<td>Method and Techniques for Workplace Training and Development</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 730</td>
<td>Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 731</td>
<td>Staffing</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 733</td>
<td>Compensation and Benefits</td>
<td>3</td>
</tr>
</tbody>
</table>

Rehabilitation Counseling and Behavioral Addictions Certificate

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSV 665</td>
<td>Foundation and Theories of Addiction</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 767</td>
<td>Psychopathology and Addictions</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 768</td>
<td>Psychopharmacology and Addictive Behavior</td>
<td>3</td>
</tr>
<tr>
<td>HDSV 769</td>
<td>Marriage and Family Counseling in Addictions</td>
<td>3</td>
</tr>
</tbody>
</table>
Course Offerings in Counseling

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDSV 602</td>
<td>Human Development</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 610</td>
<td>Counseling Services</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 612</td>
<td>Foundations of Rehabilitation Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 630</td>
<td>Statistics and Research Methodology</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 640</td>
<td>Professional Orientation and Ethics in Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 650</td>
<td>Theories of Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 706</td>
<td>Organization and Administration of School Counseling Programs</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 711</td>
<td>Human Resource Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 712</td>
<td>Counseling School Age Children</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 721</td>
<td>Independent Study</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 735</td>
<td>Counseling Methods (Lab)</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 736</td>
<td>Multicultural Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 738</td>
<td>Psychological Aspects of Disability</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 739</td>
<td>Community/Agency Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 740</td>
<td>Appraisal</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 743</td>
<td>Medical Aspects of Disability</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 750</td>
<td>Group Counseling (Lab)</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 751</td>
<td>Special Topics in Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 759</td>
<td>Substance Abuse Counseling</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 760</td>
<td>Career Counseling (Lab)</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 763</td>
<td>Family Counseling (Lab)</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 764</td>
<td>Case Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 765</td>
<td>Practicum (Lab)</td>
<td>3 (1-3)</td>
</tr>
<tr>
<td>HDSV 770</td>
<td>Applied Research in Counseling</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>HDSV 775</td>
<td>Job Development and Placement</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>HDSV 780</td>
<td>Internship I</td>
<td>3 (0-6)</td>
</tr>
<tr>
<td>HDSV 790</td>
<td>Internship II</td>
<td>3 (0-6)</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTIONS IN COUNSELING

HDSV-602. Human Development
This course is an examination of human psychological development through the life span.

HDSV-610. Counseling Services
Those aspects of counseling as they apply to school, community, and business settings will be covered in this course.

HDSV-612. Foundations of Rehabilitation Counseling
This course will explore the history and philosophy of rehabilitation, legislation affecting individuals with disabilities, organizational structure of the rehabilitation systems, and the rehabilitation counseling practice.

HDSV-640. Professional Orientation and Ethics in Counseling
Ethics, standards, and credentialing for professional counselors are presented in this course.

HDSV-650. Theories of Counseling
This course is an introduction to the primary theories and techniques in the field of counseling and their underlying components. Prerequisites: HDSV 602 and HDSV 610 or HDSV 602 and HDSV 612

HDSV-665. Foundation and Theories of Addiction
This course will introduce students to a wide range of theories and models of addiction, culturally competent treatment practices, and other topics related to addictions including, but not limited to, alcohol and other drug abuse, gambling addiction, sex addiction, eating disorders, and criminal offense.
HDSV-706. Organization and Administration of School Counseling Programs Credit 3 (3-0)
This course is a study of the organization and implementation of guidance services in schools. Prerequisite: HDSV 610 and 640

HDSV-711. Overview of Human Resources Management Credit 3 (3-0)
This course provides an overview of various aspects of Human Resources management.

HDSV-712. Counseling School Age Children Credit 3 (3-0)
This course examines how counselors can be effective in addressing the developmental, mental, and psychological needs of elementary, middle, and high school students. Prerequisite: HDSV 650

HDSV-721. Independent Study Credit 3 (3-0)
With the supervision of an approving professor, a student may carry out a special project of particular interest, and with appropriate relationship to his counseling specialization. Students must apply for and obtain approval of the supervising professor and the department chairperson one semester before registering for this course. The work of the course must be submitted in the form of a written report.

HDSV-735. Counseling Methods Credit 3 (3-0)
The fundamentals of general counseling skills will be addressed as a foundation for further study. This course includes laboratory experiences for the observation and application of counseling skills. Prerequisite: HDSV 650

HDSV-736. Multicultural Counseling Credit 3 (3-0)
This course provides an overview of issues and trends for counselors in a diverse society. Prerequisites: HDSV 650

HDSV-738. Psychological Aspects of Disability Credit 3 (3-0)
This course explores the social and psychological adjustments of disability, and examines attitudes, feelings, and responses toward persons with disabilities. Prerequisite: HDSV 610 or HDSV 612

HDSV-739. Community/Agency Counseling Credit 3 (3-0)
Counseling delivery systems and procedures found in community/agency settings will be examined in this course. Prerequisite: HDSV 650

HDSV-740. Appraisal Credit 3 (3-0)
The student will be introduced to evaluation and assessment tools, including relevant statistics and computer applications. Prerequisite: HDSV 612 or HDSV 640

HDSV-741. Assessment Credit 3 (3-0)
The medical and psychosocial aspects of disabilities, evaluation approaches, techniques interpretation, available resources, and vocational assessment will be addressed in this course. Prerequisite: HDSV 630

HDSV-743. Medical Aspects of Disability Credit 3 (3-0)
This course is an orientation to the characteristics of a range of medical impairments and their vocational implications. It explores medical terminology, common diagnostic procedures, and the role of health professionals.

HDSV-750. Group Counseling Credit 3 (3-0)
Theories, techniques, and procedures appropriate for counseling groups will be included, as well as topics to build understanding of group development and dynamics. This course includes laboratory experiences for observation and application of group counseling skills. Prerequisite: HDSV 735.

HDSV-751. Special Topics in Counseling Credit 3 (3-0)
Topics in various areas of counseling will be selected and announced by the professor. Prerequisite: HDSV 650
HDSV-759. Substance Abuse Counseling Credit 3 (3-0)
This course will examine the impact of chemical dependency and abuse on the development of individuals, the functioning of families and the productivity of the workforce. Comprehensive ways of conceptualizing and treating substance abuse will be discussed. Prerequisites: HDSV 650.

HDSV-760. Career Counseling Credit 3 (3-0)
This course includes career development theories, applied and related counseling procedures and technological applications. This course includes laboratory experiences for observation of and practice in career counseling. Prerequisite: HDSV 735.

HDSV-763. Family Counseling Credit 3 (3-0)
This course will introduce major theories of family counseling, including family systems therapy. Experiential, structural, and functional techniques of family counseling and assessment will be addressed. Prerequisite: HDSV 735.

HDSV-764. Case Management Credit 3 (3-0)
Case management process (including case finding, service coordination, referral to and utilization of the other disciplines and client advocacy), planning for the provision of independent living services, vocational rehabilitation services, computer applications, and technology for caseload management will be covered in this course. Prerequisite: HDSV 612.

HDSV-765. Practicum Credit 3 (1-4)
This is a laboratory course in which studies will engage in supervised practice in the use of counseling skills. Prerequisites: HDSV 640 and 750 or 743 and 750.

HDSV-767. Psychopathology and Addictions Credit 3 (3-0)
This course will familiarize students with criteria, co-morbidity rates, co-existing disorders, and issues of differential diagnosis based on the Diagnostic and Statistical Manual (DSM). Various behavioral addictions will be explored within a cultural framework. Prerequisites: HDSV 738.

HDSV-768. Psychopharmacology and Addictive Behavior Credit 3 (3-0)
This course addresses the ways in which alcohol, and other addictive substances affect the brain and behavior. Addictions addressed include, but are not limited to, alcohol and other drug abuse, gambling addiction, sex addiction, eating disorders, and criminal offense. This course will also explore the different classes of drugs and the associated street names for each drug. Prerequisites: HDSV 743.

HDSV-769. Marriage and Family Counseling in Addictions Credit 3 (3-0)
This course will introduce the student to systems theory and the affects of the cycle of addictions on the family. The specific addictions addressed include, but are not limited to, alcohol and other drug abuse, gambling addiction, sex addiction, eating disorders, and criminal offense. Culturally relevant values and practices in providing services to the family will also be addressed. Prerequisites: HDSV 750.

HDSV-770. Applied Research Credit 3 (2-2)
A research report of a technical nature must be produced using skills acquired in HDSV 630. The written report will be under the supervision of the instructor. A technical oral presentation will be required. Prerequisite: HDSV 740.

HDSV-775. Job Development and Placement Credit 3 (3-0)
This course will explore strategies for job development, and placement for individuals with disabilities. Prerequisite: HDSV 612.

HDSV-780. Internship I Credit 3 (0-6)
This course requires three hundred (300) clock hours of supervised internship in an appropriate field placement. Students must apply to take this course one semester before enrollment. Class meetings will be scheduled and announced by the professor. Individual conferences will be required. Prerequisites: HDSV 765 and all professional core courses as specified by track.
HDSV-790. Internship II Credit 3 (0-6)
Three hundred (300) clock hours of advanced supervised practice in an appropriate counseling setting is required. Students must apply to take this course one semester before placement. Class meetings will be scheduled and announced by the professor. Individual conferences will be required. Prerequisites: HDSV 765, 780 and all professional core courses as specified by track.

HDSV-799. Internship I and II Credit 6 (0-6)
This course provides the option of taking Internship I and Internship II in the same semester. Combining the traditional internship requirements into a one semester 600-hour experience. All other internship requirements remain consistent with HDSV 780 and HDSV 790.

*Exceptions: Prior professional courses except HDSV 759, 763, and 770

All major courses must be taken in the counseling program here at NORTH CAROLINA A&T State University.

All “provisionally admitted” students must be reviewed after 9 hours of course work and no additional courses will be given until an “unconditional” application has been submitted by the student, reviewed and accepted by the counseling faculty.

Master of School Administration Degree Program
Principal Licensure
42 Credit Hours Required

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSA 770</td>
<td>Research and Inquiry</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 771</td>
<td>Diversity Issues in Administration</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 772</td>
<td>Administration, Management and Supervision</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 773</td>
<td>Issues in Educational Administration</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 774</td>
<td>Curriculum and Instructional Leadership</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 775</td>
<td>Advanced Technology for Administrators</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 776</td>
<td>Law, Policy and Politics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 777</td>
<td>Ethical and Societal Aspects of Leadership</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 778</td>
<td>The Principalship</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 779</td>
<td>Strategic Planning and Problem Solving</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 780</td>
<td>Internship Seminar I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 781</td>
<td>Internship Practicum I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 782</td>
<td>Internship Seminar II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>MSA 783</td>
<td>Internship Practicum II</td>
<td>3 (3-0)</td>
</tr>
</tbody>
</table>

Comprehensive Exam: Successful completion of the comprehensive exam will be required prior to enrollment in the internship and should be taken the final semester of formal coursework. The exam will consist of both written and oral presentations to the faculty. Students will be presented with a case study and are expected to integrate and apply concepts and information from core courses and clinical experiences.

Internship Seminar and Practicum

Seminar topics may include:
• Legal Issues
• Special Education
• Personnel Management
• Due process in student and staff relationships
• Strategies for building parent and community relationships
• Data collection and analysis
• Creating Safe and secure school environments
• Professional development for staff
• Selecting and managing instructional technology
Leadership Portfolio
Each candidate must develop a leadership portfolio that provides evidence of competence in each National, State, and Institutional Standard. The portfolio will document evidence of an intern’s reflection on individual growth with respect to knowledge, skills, and professional perspectives in each standard.

State Licensure Examination
The School Leaders Licensure Assessment is required for the State of North Carolina. It must be taken and passed during the internship year prior to graduation.

Course Descriptions in School Administration
Students are enrolled in cohort groups and move thru the sequence of courses together.

MSA 770. Research and Inquiry Credit 3 (3-0)
This course will examine the quantitative and qualitative research methodologies appropriate to school settings and the evaluation of research, data analysis, and its application to schools. (Fall, Spring, and Summer)

MSA 771. Diversity Issues in Administration Credit 3 (3-0)
This course will focus on skills leaders need to successfully deliver programs for diverse student populations. Diverse learning in a pluralistic society and content appropriate strategies will be addressed. (Fall, Spring, and Summer)

MSA 772. Administration, Management, and Supervision Credit 3 (3-0)
This course in administration of K-12 schools will focus on (1) formal and informal organizational structures, concepts, and practices, (2) the management process, (3) administrative and supervisory functions with particular reference to personnel, and (4) program and fiscal management. (Fall, Spring, and Summer)

MSA 773. Issues in Educational Administration Credit 3 (3-0)
This course will focus on current education issues and administrative organization of schools, federal-state-local contexts, accountability issues, school finance, role of technology as both an instructional and administrative tool, building consensus, communicating effectively, and developing collaborative skills will be included. (Fall, Spring, and Summer)

MSA 774. Curriculum and Instructional Leadership Credit 3 (3-0)
This course will focus on the application of current effective theories of learning and research on classroom instruction. Curriculum planning based on state and national standards, diversity issues, and use of instructional technology and assessment strategies will be addressed. Leadership styles and models to improve curriculum and instruction through classroom observation and assessment of teacher delivery will be included. (Fall, Spring, and Summer)

MSA 775. Technology for School Administrators Credit 3 (3-0)
The use of technology for curriculum management, student management, fiscal management, decision-making, and other administrative applications will be covered in this course. (Fall, Spring, and Summer)

MSA 776. Law, Policy, and Politics of Education Credit 3 (3-0)
This course will cover the influence of the laws, educational policies, and power structures of communities on the goals and operations of schools. State statutes, administrative policies and regulations, court decisions regarding public school personnel, and appropriate application of legal principles will be discussed. (Fall, Spring, and Summer)

MSA 777. Ethical and Societal Aspects of Educational Leadership Credit 3 (3-0)
This course will provide an examination of the social, cultural, political, economical, and philosophical contexts from which the current issues that affect schools and schooling have evolved. (Fall, Spring, and Summer)
MSA 778. The Principalship Credit 3 (3-0)
This principalship course will examine different management perspectives of school operations, organizations, and team leadership. The relationship of schools to other community agencies, supervision, instructional leadership, personnel administration, and communication will be discussed. (Fall, Spring, and Summer)

MSA 779. Strategic Planning and Problem Solving Credit 3 (3-0)
This course will focus on components of strategic planning and problems solving including research and best practices. Problem-solving processes will emphasize retrieving, assessing, evaluating, and synthesizing research as applied to educational programs. (Fall, Spring, and Summer)

MSA 780. Internship Seminar I Credit 3 (1-2)
The internship seminar is conducted once a week during the full-time internship. This seminar complements field activities and provides interns the opportunity to share experiences, develop concepts, and broaden their knowledge of school administration. Students will develop case studies, and portfolios to demonstrate acquisition of skills. Co-requisite: MSA 781 Internship Practicum I. (Fall, Spring, and Summer)

MSA 781. Internship Practicum I Credit 3 (0-6)
Each student will complete a semester internship in a public educational setting with joint supervision by a university faculty member and a cooperating mentor for each individual intern. The internship is the culminating experiences in the preparation of school administrators. Co-requisite: MSA 780 Internship Seminar I. (Fall, Spring, and Summer)

MSA 782. Internship Seminar II Credit 3 (1-2)
The internship seminar is conducted once a week during the full-time internship. This seminar complements field activities and provides interns the opportunity to share experiences, develop concepts, and broaden their knowledge of school administration. Students will develop case studies, and portfolios to demonstrate acquisition of skills. Co-requisite: MSA 783 Internship Practicum I. (Fall, Spring, and Summer)

MSA 783. Internship Practicum II Credit 3 (0-6)
Each student will complete a semester internship in a public educational setting with joint supervision by a university faculty member and a cooperating mentor for each individual intern. The internship is the culminating experiences in the preparation of school administrators. Co-requisite: MSA 782 Internship Seminar I. (Fall, Spring, and Summer)

Graduate Faculty

Department: Human Development and Services
Interim Chair: Dr. David Lundberg
James J. Battle -B.S., M.S., M.S., Ed.S, Ed.D, North Carolina A.& T. State University; University of North Carolina at Greensboro; Nova Southeastern University; MSA Program Assistant
Patricia D. Bethea-Whitfield, B.A., North Carolina Central University; M.Ed., University of North Carolina at Chapel Hill; Ed.D., University of North Carolina at Greensboro; Associate Professor
Bernadine Chapman, B.S., Elizabeth City State University; M.A., Teachers College, Columbia University; Ed.D., North Illinois University; Assistant Professor
Edward Fort, B., B.S., M.Ed., Wayne State University; Ed.D., University of California, Berkeley; Professor and Chancellor Emeritus
Brenda S. Hall, B.A., M.Ed., Shippensburg University; Ed.D., Virginia Polytechnic Institute and State University; Assistant Professor
Wyatt D. Kirk, B.S., M.S., Ed.D., Western Michigan University; Associate Professor and Chairperson
Robin G. Liles, B.A., University of North Carolina at Chapel Hill; M.S., Ed.S., Ph.D., University of North Carolina at Greensboro; Assistant Professor
David L. Lundberg, B.S., United States Air Force Academy; M.Ed., Boston University; Ph.D., University of North Carolina at Greensboro; Assistant Professor & Interim Chair
Chester F. Preyar, B.S., Miami University; M.Ed., Xavier University; Ed.S., University of Cincinnati; Associate Professor
Tammy T. Webb, B.S., Coppin State College; M.S.W., Ohio State University; Ph.D., Mississippi State University; Assistant Professor
Miriam L. Wagner, B.S., University of North Carolina at Greensboro; M.Ed., North Carolina A&T State University; Ph.D., University of North Carolina at Greensboro; Assistant Professor
Tyra Turner Whittaker, B.S., Xavier University of Louisiana; M.S., Xavier University of Louisiana; Rh.D., Southern Illinois University-Carbondale; Associate Professor
Mary P. Williams, B.A., Winston-Salem State University; MHS, Duke University; Ed.D, Atlanta University; Associate Professor.
OBJECTIVE

The Department of Business Administration offers a program of study leading to the Master of Science in Management degree with a major concentration in Human Resources Management (HRM). The program prepares students and professionals for careers in public and private sector positions in the Human Resources Management function of organizations and managers interested in understanding how to effectively develop and manage human resources.

DEGREE OFFERED

Master of Science in Management – Human Resources Management

GENERAL PROGRAM REQUIREMENTS

The general requirements for admission are an undergraduate degree from an accredited institution with a grade point average of 2.6 (on a 4.0 scale), and a satisfactory GMAT score. Applicants who do not meet the requirements will be considered on an individual basis. A GPA of 3.0 is required for graduation.

PROGRAM REQUIREMENTS

Students with a variety of undergraduate majors are encouraged to apply. The program is designed to appeal to those who either currently work in industry or desire to affiliate with firms or organizations using cutting-edge tools to deliver their products or services. Students in the program will have a business undergraduate degree and wish to study a particular area in greater depth, or have a non-business degree with the personal or professional interests or experiences that would be enhanced by a high quality graduate program in management education.

The program requires a minimum of 36 semester hours. There is no thesis requirement. Students without an undergraduate business degree will be required to take appropriate foundation courses, which may extend the requirements to 48 semester hours. The program consists of 18 hours of core courses, and 18 hours of coursework, including one 3-hour elective, in the HRM concentration.

The student pursuing the Master of Science in Management with a major concentration in HRM is required to complete a common core of courses consisting of:

- ACCT 714 Managerial Accounting & Finance 3 semester hours
- BUAD 713 Business Applications Development 3 semester hours
- BUAD 715 Quantitative Business Analysis 3 semester hours
- BUAD 716 Strategic Marketing 3 semester hours
- BUAD 718 Management & Organization Analysis 3 semester hours
- ECON 608 Managerial Economics 3 semester hours

ELECTIVE One course selected from the following:

- BUAD 735 Contemporary Issues in Human Resources Management 3 semester hours
- BUAD 736 Human Resources Management Strategy 3 semester hours

Courses in the HRM concentration will consist of the following:

- BUAD 730 Human Resources Management 3 semester hours
- BUAD 731 Staffing 3 semester hours
- BUAD 732 Training and Development 3 semester hours
- BUAD 733 Compensation and Benefits 3 semester hours
- BUAD 734 Employee Relations 3 semester hours
Students without an undergraduate business degree will be required to take appropriate foundation courses, which consist of the following.

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 708 Seminar in Financial Concepts</td>
<td>3 semester hours</td>
</tr>
<tr>
<td>BUAD 705 Methods in Business Analysis</td>
<td>3 semester hours</td>
</tr>
<tr>
<td>BUAD 712 Foundations of Enterprise Management</td>
<td>3 semester hours</td>
</tr>
<tr>
<td>ECON 706 Seminar in Economics</td>
<td>3 semester hours</td>
</tr>
</tbody>
</table>

LIST OF GRADUATE COURSES

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 708 Seminar in Financial Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 714 Managerial Accounting & Finance</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 705 Methods in Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 712 Foundations of Enterprise Management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 713 Business Applications Development</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 715 Quantitative Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 716 Strategic Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 718 Management & Organization Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 730 Human Resources management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 731 Staffing</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 732 Training and Development</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 733 Compensation and Benefits</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 734 Employee Relations</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 735 Contemporary Issues in Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 736 Human Resources Management Strategy</td>
<td>3</td>
</tr>
<tr>
<td>ECON 608 Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 706 Seminar in Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSES WITH DESCRIPTION IN BUSINESS ADMINISTRATION

BUAD-705. Methods in Business Analysis
Credit 3 (3-0)
This course focuses on building an understanding of mathematical analysis techniques necessary to solve complex business problems from a wide range of business areas, including inventory, customer service, sales, and quality management. Basic statistical concepts and statistical process improvement are covered. Students will use a variety of computer software packages including Microsoft Excel and SPSS.

BUAD-712. Foundations of Enterprise Management
Credit 3 (3-0)
This course provides an understanding of key themes related to successful enterprise management, and discussions of the interpersonal and intellectual skills necessary to contribute to a highly competitive and globalized business environment. Topics include the globalization of commerce, marketing and market systems, competitive strategy, perspectives on legal and ethical business conduct, information technology, and the elements of quality. Individual and team competencies are developed using materials that involve interpersonal skills, problem-solving, and case analysis.

BUAD 713. Business Applications Development
Credit 3 (3-0)
This course focuses on the use of object-oriented programming to develop applications for business solutions. Topics include user-interface design, basic programming logic and techniques, database concepts, and database applications.

BUAD-715. Quantitative Business Analysis
Credit 3 (3-0)
This course familiarizes students with basic quantitative techniques for decision-making in all business functions. Specific topics will include data collection and presentation; basic descriptive statistics and probability; discrete and continuous probability distributions; confidence intervals; business forecasting; linear and multiple regression models; linear and integer, programming; and computer simulation. Emphasis will be on the application of these techniques for managerial decision-making. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.
BUAD-716. Strategic Marketing Credit 3 (3-0)
This course provides in-depth examination of the role of marketing in strategic planning and decision-making. Students develop skills critical to directing business-unit marketing strategy and designing or reengineering a customer-driven organization. The course content emphasizes cases and readings. It also exposes students to emerging issues in marketing strategy including relationship marketing and e-commerce. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-718. Management and Organizational Analysis Credit 3 (3-0)
This course is a study of formal organizations as rational, organic, open systems and their behavior in response to an ever-changing, global and domestic environment. It covers macro and micro theories of management and organizations and their application to organizational design and processes. Organizational effectiveness, strategic planning and control, structural designs, leadership, motivation, globalization, and corporate politics and culture are studied through extensive reading, case studies, exploratory research and seminar discussions. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-730. Human Resources Management Credit 3 (3-0)
This course provides an overview of the design, administration and evaluation of the human resources function. It looks at conceptual issues, policies and practices used by organizations to attract, develop and retain human resources; and the role of human resources management in organizational effectiveness. Topics include an introduction to the activities of the human resource function: staffing, training and development, performance appraisal, compensation and benefits, employee relations, and legal environment of human resources management, and special issues and challenges in international human resources management. Theories relating to human motivation and behavior are discussed. Prerequisites: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-731. Staffing Credit 3 (3-0)
This course looks at theory and application methods used in the recruitment and selection of employees. Course topics include job analysis, interviewing and testing methods, selection techniques, legal issues in recruitment and selection, internal and external selection processes including performance appraisal and management, staffing philosophies for international operations, and expatriate repatriation. Prerequisite: BUAD 730.

BUAD-732. Training and Development Credit 3 (3-0)
This course explores the theory and practice used for training and developing human resources in organizations. Course content includes identifying training needs, designing and implementing training programs to satisfy individual and organizational goals, and evaluating training program effectiveness. Workforce diversity, theories of organizational and individual learning, career development, change theory and training for international operations are also discussed. Prerequisite: BUAD 730.

BUAD-733. Compensation and Benefits Credit 3 (3-0)
This course examines theory and practice in designing and managing compensation and benefit systems in organizations. Issues considered include compensation and benefit systems as vehicles for attracting, motivating, and retaining employees; designing individual and group incentive plans; structuring pension plans; determining wage levels and structures; legal issues and considerations in compensation and benefit administration; and expatriate compensation. Prerequisite: BUAD 730.

BUAD-734. Employee Relations Credit 3 (3-0)
This course examines the policies and practices used to promote equitable treatment of employees. Topics include employee health and safety, employee communication, equal opportunity and affirmative action, workforce diversity, employee rights, conflict resolution, industrial relations, and international labor relations. Also includes legal aspects of employee relations. Prerequisite: BUAD 730.
BUAD-735. Contemporary Issues in Human Resources Management Credit 3 (3-0)
This course considers important issues affecting the acquisition and utilization of human resources in a dynamic global environment. Topics vary and depend on the current HRM environment. Prerequisites: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-736. Human Resources Management Strategy Credit 3 (3-0)
This course focuses on the formulation and implementation of human resources management strategies. Emphasis is placed on the strategic dimensions of recruitment, selection, development and retention of a workforce needed to accomplish organizational strategic objectives. Prerequisites: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

Graduate Faculty

Department: Business Administration
Chair: Dr. Edna J. Ragins

Obasi Akan, B.A. Howard University; M.S. Case Western Reserve University; Ph.D. Case Western Reserve University; Assistant Professor
Hayward P. Andres, B.S., Southern University; M.S., University of West Florida; Ph.D., Florida State University; Assistant Professor
Robert J. Angell, B.S., B.A., University of North Carolina at Chapel Hill; M.B.A., University of Virginia; D.B.A., Florida State University; Professor
Chikwe Anyansi-Archibong, B.S., M.B.A., Ph.D., University of Kansas; Professor
Amanda Harmon Cooley, B.A. University of North Carolina at Chapel Hill; J.D. University of North Carolina at Chapel Hill; Assistant Professor
Kathryn E. Dobie, B.M., Wittenburg University; A.S., Dalton College; M.B.A., University of Central Arkansas; Ph.D., University of Memphis; C.P.M.; Professor
Marka Fleming, B.S. Wake Forest University; J.D. North Carolina Central University; Assistant Professor
Roger J. Gagnon, B.S., Boston University; M.B.A., Clark University; Ph.D., University of Cincinnati; Associate Professor and Director-Master of Science in Management Program
Lawrence M. Glisson, B.S., M.A., East Carolina University; M.B.A., Ph.D., The American University; C.P.M., Professor
Rhoda L. Hensley, B.S., M.B.A., James Madison University; Ph.D., Virginia Commonwealth University; Associate Professor
Susan Houghton, B.A. Yale University; M.B.A. University of North Carolina at Chapel Hill; Ph.D. University of North Carolina at Chapel Hill; Associate Professor
Robert L. Howard, B.A., Williams College; M.B.A., University of Chicago; Ph.D., The Ohio State University; Associate Professor
Alice M. Johnson, B.A., Winston-Salem State University; M.S., Winthrop University; Ph.D., University of Kentucky; Assistant Professor
Olenda Johnson, B.S., M.B.A., Florida A&M University; Ph.D., University of Pittsburgh; Associate Professor
Mary R. Lind, B.S., Duke University; M.B.A., Ph.D., University of North Carolina at Chapel Hill; Professor
Thaddeus McEwen, B.S., College of Arts, Science and Technology, Jamaica; M.S., Ph.D., Southern Illinois University at Carbondale; Professor
Kimberly R. McNeil, B.S., North Carolina A&T State University; Ph.D., Florida State University; Associate Professor
Angela K. Miles, B.A., University of Virginia; M.B.A., University of Wisconsin-Madison; Ph.D., Florida State University; Assistant Professor
Shona D. Morgan, B.S., Spelman College; M.S., Ph.D., North Carolina State University; Assistant Professor
Japhet H. Nkonge, B.A., North Carolina A&T State University; M.B.A., Rutgers University; Ph.D., University of North Carolina at Chapel Hill; Professor
Edna J. Ragins, B.S., Hampton University; M.S., University of Wisconsin; Ph.D., Florida State University; Associate Professor & Chairperson
Alonzo Redmon, B.S., University of Missouri at Columbia; M.B.A., Indiana University;
Patrick Rogers, BSBA, M.B.A., Western Carolina University; Ph.D., University of Tennessee at Knoxville; Associate Professor
Alice Stewart, B.B.A., M.B.A., University of Kentucky; Ph.D., University of North Carolina at Chapel Hill; Associate Professor
Joanne M. Sulek, B.S., M.A., Wake Forest University; Ph.D., University of North Carolina at Chapel Hill; Professor
George S. Swan, B.A., The Ohio State University; J.D., University of Notre Dame; LL.M., S.J.D., University of Toronto Faculty of Law; Associate Professor
Silvanus Udoka, B.S., Weber State University; M.S., Ph.D., Oklahoma State University; Associate Professor
Isaiah O. Ugboro, B.S., Utah State University; M.B.A., Ph.D., University of North Texas; Professor
The Master of Science and Doctor of Philosophy Programs in Industrial Engineering are designed to meet the need for technical and/or managerial specialists in Industrial Engineering. Four areas of concentration (Human-Machine Systems Engineering (HMSE), Management Systems Engineering (MSE), Production Systems Engineering (PSE), and Operations Research and Systems Analysis (ORSA) are being offered.

DEGREES OFFERED

Master of Science - Industrial Engineering
Ph.D. - Industrial Engineering

GENERAL PROGRAM REQUIREMENTS

The program is open to students with a bachelor’s degree in a scientific discipline from an institution of recognized standing. Students desiring to enter the program, who do not possess a bachelor’s degree in a scientific discipline are required to complete with at least a “B” average, a number of background courses in mathematics, physics and engineering science prior to full admission to the graduate program. Students entering the program without a bachelor’s degree in Industrial Engineering from an accredited department are required to remove all deficiencies in general professional prerequisites. Applicants with their highest degree from non-English speaking countries must complete the Test of English as a Foreign Language (TOEFL) exam and obtain a score of 550 or above.

Admission Requirements for Masters Degree Program (MSIE)
The application and supporting materials must be submitted to the School of Graduate Studies. The Department will process applications within 30 days of receipt from the School of Graduate Studies.

Admission Requirements for Doctor of Philosophy in Industrial Engineering (Ph.D. in IE)
The application and supporting materials must be submitted to the School of Graduate Studies. The Department will process applications within 30 days of receipt from the School of Graduate Studies.

To be considered for admission to the Ph.D. in Industrial Engineering an applicant must satisfy the following requirements:
1. At least one degree in engineering.
2. A Bachelor of Science degree in Industrial Engineering from an EAC-ABET accredited program with a cumulative grade point average of 3.5 or above on a 4 point scale.
OR
A Master of Science degree in a discipline related to Industrial Engineering, from a college or university recognized by a regional or general accrediting agency, with a cumulative grade point average of 3.3 or above on a 4 point scale.
3. Complete the Graduate Record Exam (GRE) Aptitude Exam.

PROGRAM OPTIONS AND DEGREE REQUIREMENTS

For the Master of Science Program three degree options are available, namely, Thesis, Project and Course-only. The thesis option requires 24 semester hours of course work and 6 hours of thesis culminating in scholarly research work. The project option requires 30 semester hours of course work and 3 hours of project work. Both the thesis and project options require an oral examination and a written report. The Course-only option requires 33 semester hours of course work and a 1 semester hour comprehensive exam. To graduate, a student must maintain a 3.0 grade point average.
The Ph.D. program requires a total of 75 semester hours after the B.S. degree, which includes 18 semester hours of dissertation work. The Ph.D. program offers specialization in Human-Machine Systems Engineering (HMSE), Management Systems Engineering (MSE), and Production Systems Engineering (PSE).

Additional details of requirements for the M.S. and Ph.D. programs in Industrial Engineering are outlined in the Graduate Program Student Handbook available from the Department.

<table>
<thead>
<tr>
<th>List of Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEN 600 Survey of Industrial Engineering Topics</td>
<td>3</td>
</tr>
<tr>
<td>INEN 615 Industrial Simulation</td>
<td>3</td>
</tr>
<tr>
<td>INEN 618 Total Quality Improvement</td>
<td>3</td>
</tr>
<tr>
<td>INEN 624 Computer-Integrated Design / Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>INEN 625 Industrial Information Systems</td>
<td>3</td>
</tr>
<tr>
<td>INEN 628 Six Sigma Quality</td>
<td>3</td>
</tr>
<tr>
<td>INEN 632 Robotic Systems and Applications</td>
<td>3</td>
</tr>
<tr>
<td>INEN 633 Engineering Law and Ethics</td>
<td>3</td>
</tr>
<tr>
<td>INEN 635 Materials Handling Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>INEN 648 Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>INEN 653 Engineering Entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>INEN 655 Production Planning & Scheduling</td>
<td>3</td>
</tr>
<tr>
<td>INEN 658 Project Management</td>
<td>3</td>
</tr>
<tr>
<td>INEN 664 Systems Safety Engineering and Risk Analysis</td>
<td>3</td>
</tr>
<tr>
<td>INEN 665 Human-Machine Systems</td>
<td>3</td>
</tr>
<tr>
<td>INEN 675 Design and Analysis of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>INEN 685 Selected Topics in Industrial Engineering</td>
<td>1-3</td>
</tr>
<tr>
<td>INEN 694 Special Projects</td>
<td>1-3</td>
</tr>
<tr>
<td>INEN 721 Systems Engineering Models</td>
<td>3</td>
</tr>
<tr>
<td>INEN 731 Engineering Cost Control</td>
<td>3</td>
</tr>
<tr>
<td>INEN 734 Engineering Organization</td>
<td>3</td>
</tr>
<tr>
<td>INEN 735 Human-Computer Interface</td>
<td>3</td>
</tr>
<tr>
<td>INEN 742 Linear and Integer Programming</td>
<td>3</td>
</tr>
<tr>
<td>INEN 745 Advanced Computer-Integrated Production Systems</td>
<td>3</td>
</tr>
<tr>
<td>INEN 812 Advanced Ergonomics</td>
<td>3</td>
</tr>
<tr>
<td>INEN 813 Cognitive Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INEN 814 Advanced Topics in Human-Machine Systems</td>
<td>3</td>
</tr>
<tr>
<td>INEN 821 Multivariate Statistics for Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INEN 822 Advanced Systems Simulation</td>
<td>3</td>
</tr>
<tr>
<td>INEN 831 Service Sector Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INEN 832 Information Technology Management</td>
<td>3</td>
</tr>
<tr>
<td>INEN 833 Supply Chain Systems Engineering</td>
<td>3</td>
</tr>
<tr>
<td>INEN 841 Linear and Nonlinear Optimization</td>
<td>3</td>
</tr>
<tr>
<td>INEN 843 Queuing Theory</td>
<td>3</td>
</tr>
<tr>
<td>INEN 844 Reliability and Maintenance</td>
<td>3</td>
</tr>
<tr>
<td>INEN 851 Integrated Manufacturing Control Systems</td>
<td>3</td>
</tr>
<tr>
<td>INEN 852 Integrated Product and Process Design</td>
<td>3</td>
</tr>
<tr>
<td>INEN 853 Enterprise Integration</td>
<td>3</td>
</tr>
<tr>
<td>INEN 854 Inventory & Warehouse Systems</td>
<td>3</td>
</tr>
<tr>
<td>INEN 861 Nano/Micro- and Bio-Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>INEN 885 Advanced Special Topics in Industrial Engineering</td>
<td>1-3</td>
</tr>
</tbody>
</table>

M.S. level Pass/Fail Courses

<table>
<thead>
<tr>
<th>List of Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEN 792 Industrial Engineering Master’s Seminar</td>
<td>1</td>
</tr>
<tr>
<td>INEN 793 Master’s Supervised Teaching</td>
<td>3</td>
</tr>
<tr>
<td>INEN 794 Master’s Supervised Research</td>
<td>3</td>
</tr>
<tr>
<td>INEN 796 Master’s Project</td>
<td>3</td>
</tr>
<tr>
<td>INEN 797 Master’s Thesis</td>
<td>1-6</td>
</tr>
<tr>
<td>INEN 799 Continuation of Master’s Project/Thesis</td>
<td>1</td>
</tr>
</tbody>
</table>

Ph.D. level Pass/Fail Courses

<table>
<thead>
<tr>
<th>List of Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEN 991 Doctoral Qualifying Examination</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE DESCRIPTION
Advanced Undergraduate and Graduate

INEN-600. Survey of Industrial Engineering Topics Credit 3 (3-0)
This course will introduce topics in the following areas of Industrial Engineering: Engineering Economy, Linear Programming, Production Control, Methods Engineering, and Statistical Process Control. Prerequisite: Senior/Graduate Standing.

INEN-615. Industrial Simulation Credit 3 (3-0)
This course addresses discrete-event simulation languages. One general purpose simulation language is taught in depth. The use of simulation in design and improvement of production and service systems is emphasized. Term papers and projects will be required. Prerequisite: Consent of Instructor.

INEN-618. Total Quality Improvement Credit 3 (3-0)
This course provides a systematic engineering approach to understanding the philosophy and application of Total Quality Improvement (TQI). It also introduces students to Continuous Improvement (C) techniques used by management as a means of improving engineering processes in order to become and remain competitive in the global marketplace. The C1 techniques and concepts this course includes a strategic planning, benchmarking, ISO 9000, teamwork, customer satisfaction, employee involvement, quality tools, and business process reengineering. Design projects are required. Prerequisite: Senior/Graduate Standing.

INEN-624. Computer-Integrated Design / Manufacture Credit 3 (2-2)
This course addresses Computer-based tools and techniques for integrated product and process design. Topics include numerical computer-aided design and process planning, group technology, numerical control, computer numerical control, and direct numerical control, rapid response technologies, integrated manufacturing planning, execution, and control and computer-integrated manufacturing. Design projects are required. Prerequisite: Senior/Graduate Standing.

INEN-625. Information Systems Credit 3 (3-0)
This course introduces the planning, design, implementation and evaluation of industrial information systems. Analysis and design techniques, organization of data, current software tools, client-server architectures, and current database technologies are presented. The role of information systems in global manufacturing, distribution, and services is addressed. Design projects are required. Prerequisite: Senior/Graduate Standing.

INEN 628. Six Sigma Quality Credit 3(2-2)
This course covers the current Six Sigma body of knowledge for process engineering and improvement as well as Lean concepts and tools. Topics covered include problem identification and implementation of improved operations and processes. This course prepares students to take the Six Sigma Certification Exam. A project is required. Prerequisite: Consent of Instructor.

INEN-632. Robotic Systems and Applications Credit 3 (2-2)
This course addresses design, analysis, implementation and operation of robotics in production systems. End effectors, vision systems, sensors, stability and control off-line programming, and simulation of robotic systems are covered. Methods for planning robotic work areas are emphasized. Design projects are required. Prerequisite: Senior/Graduate Standing.

INEN-633. Engineering Law and Ethics Credit 3 (2-2)
This course introduces engineers to law and ethics. Topics include contract law and practices, product liability, intellectual property and patent law, research and development contracts,
environmental law, interstate commerce regulations, labor law, workers’ compensation, safety regulations, ethical issues involving conflict of interest, and confidentiality. Prerequisite: Senior/Graduate Standing.

INEN-635. Materials Handling Systems Design Credit 3 (2-2)
This course focuses on the design and analysis of materials handling and flow in manufacturing facilities. Principles, functions, equipment and theoretical approaches in materials handling are discussed. Tools for the automation of materials handling are introduced. Design projects are required. Prerequisite: Senior/Graduate Standing.

INEN-648. Biomechanics Credit 3 (3-0)
This course covers human biomechanical and physiological behavior during work. Quantitative methods using engineering mechanics principles and computer simulation are emphasized. Prerequisite: Senior/Graduate Standing.

INEN-653. Engineering Entrepreneurship Credit 3 (2-2)
This course focuses on innovation and entrepreneurial skills development oriented toward an engineering enterprise. The course covers key entrepreneurial areas of intellectual property; evaluation of market viability of new product ideas; shaping product ideas into the right products or services for the right markets; developing strategies for product positioning, marketing and operations; acquiring the resources needed to start a new venture; and leadership roles for the founders of engineering ventures. A project is required. Prerequisite: Consent of Instructor.

INEN-655. Production Planning & Scheduling Credits 3 (3-0)
This course focuses on the design, control and underlying behavior of manufacturing and service systems with emphasis on quantitative and information technology methods. Topic covered in this course include demand forecasting, inventory management, aggregate planning, operations scheduling, Material Requirements Planning and Manufacturing Resource Planning, Just-in-Time, Theory of Constraints and Supply Chain Management. Projects will be required. Prerequisite: Senior/Graduate Standing.

INEN-658. Project Management Credit 3 (3-0)
This course addresses project proposal preparation, resource and cost estimation, project planning, organizing and controlling, network diagrams, and computerized project planning systems. Prerequisite: Senior/Graduate Standing.

INEN-664. Systems Safety Engineering and Risk Analysis Credit 3 (3-0)
This course presents the principles and methods of system safety management and risk analysis. Quantitative and qualitative methods and their applications in safety and risk analysis of human-machine systems are emphasized.

INEN-665. Human Machine Systems Credit 3 (2-2)
This course emphasizes the application of perceptual, cognitive, and physical ergonomics principles to the design of human-machine systems. Topics covered include physiological limitations, cognitive and perceptual issues, task complexity and the demands on physical/cognitive resources, human-machine system integration, usability and evaluation methods. Design projects are required. Prerequisites: Senior/Graduate Standing in ISE or Consent of Instructor.

INEN-675. Design and Analysis of Experiments Credit 3 (3-0)
This course addresses various experimental designs, to analyze data for research projects, process improvements, human factors studies, and surveys. Designs covered include Latin Squares, complete and incomplete block designs, one, two, and three variable factorials, fractional factorials, nested designs, and 2k designs. Suitable laboratory apparatus will be set up to study the effect of design parameters on selected response. Statistical software will be utilized to analyze results. Parametric statistics such as analysis of variance (ANOVA) are introduced. Prerequisite: Senior/Graduate Standing.
INEN-685. Selected Topics in Industrial Engineering Variable Credit (1-3)
Selected engineering topics of interest to students and faculty. The topics will be selected
before the beginning of the course and will be pertinent to the programs of the students
enrolled. Prerequisite: Senior/Graduate Standing.

INEN-694. Special Projects Variable Credit (1-3)
Study arranged on a special engineering topic of interest to student and faculty member, who
will act as advisor. Topics may be analytical and/or experimental and encourage independent
study. Prerequisite: Consent of the instructor.
M.S. and Ph.D. Students Only

INEN-721. Systems Engineering Models Credit 3 (3-0)
This course presents an overview of modern quantitative and computational techniques for
system modeling, design and control. Topics include fuzzy set theory, neural network, control
theory, optimization search methods, Petri-nets, and knowledge-based systems. Prerequisite:
Graduate Standing.

INEN-731. Engineering Cost Control Credit 3 (3-0)
This course is designed to emphasize the use of cost data by engineers in support of the financial
management function. Cost functions, cost behavior, cash control, budgeting, and cash flow
analysis are discussed.

INEN-734. Engineering Organization Credit 3 (3-0)
This course presents theories of organizational structures, motivation, leadership, delegation,
incentives and rewards systems, teams, strategic planning, and personnel evaluation.
Prerequisites: Graduate Standing and Consent of Instructor.

INEN-735. Human-Computer Interface Credit 3 (3-0)
This course provides a fundamental coverage of topics in human-computer interface (HCI).
The primary emphasis is on the impact of human characteristics and the use of information
processing models for HCI-design, usability evaluation, virtual reality, and multimedia systems.
Prerequisite: Graduate Standing.

INEN-742. Linear and Integer Programming Credit 3 (3-0)
This course addresses solution techniques for linear and integer programming problems.
Topics addressed include initial basic feasible solutions, large scale linear programs, column
generations, scaling, Dantzig-Wolfe decomposition, Interior point methods, integer programming
models, and branch and bound approaches for solving integer programming models.
Prerequisites: Consent of Instructor.

INEN-745. Advanced Computer-Integrated Production Systems Credit 3 (3-0)
This course addresses the principles relating to integration issues for an automated manufacturing
enterprise. Topics include control architectures, communication networks and standards
for graphical information interchange. Current research areas will be discussed. Design projects
are required. Prerequisites: INEN-624 and INEN-635.

INEN-792. Industrial Engineering Master’s Seminar Credit 1 (1-0)
This course introduces contemporary industrial engineering topics via talks by individuals
from industry, government, and academia. Prerequisites: Graduate Standing in ISE.

INEN-793. Master’s Supervised Teaching Credit 3 (3-0)
This course provides students with the experience of assisting in instruction and evaluation of
lecture and laboratory components of industrial engineering courses. Prerequisites: Graduate
Standing in ISE

INEN-794. Master’s Supervised Research Credit 3 (3-0)
This course provides students with the experience of assisting in all aspects of planning and
completing research projects. Prerequisites: Graduate Standing in ISE
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>INEN-796</td>
<td>Master’s Project</td>
<td>3 (3-0)</td>
<td>Graduate Standing in ISE</td>
</tr>
<tr>
<td>INEN-797</td>
<td>Master’s Thesis Variable</td>
<td>1-6</td>
<td>Graduate Standing in ISE</td>
</tr>
<tr>
<td>INEN-799</td>
<td>Continuation of Master’s Project / Thesis</td>
<td>1 (1-0)</td>
<td>Graduate Standing in ISE</td>
</tr>
<tr>
<td>INEN-812</td>
<td>Advanced Ergonomics</td>
<td>3 (3-0)</td>
<td>Graduate Standing</td>
</tr>
<tr>
<td>INEN-813</td>
<td>Cognitive Systems Engineering</td>
<td>3 (3-0)</td>
<td>Graduate Standing and Consent of Instructor</td>
</tr>
<tr>
<td>INEN-814</td>
<td>Advanced Topics in Human-Machine Systems</td>
<td>3 (3-0)</td>
<td>Graduate Standing and Consent of Instructor</td>
</tr>
<tr>
<td>INEN-821</td>
<td>Multivariate Statistics For Engineers</td>
<td>3 (3-0)</td>
<td>Graduate Standing and Consent of Instructor</td>
</tr>
<tr>
<td>INEN-822</td>
<td>Advanced Systems Simulation</td>
<td>3 (3-0)</td>
<td>Graduate Standing and Consent of Instructor</td>
</tr>
<tr>
<td>INEN-831</td>
<td>Service Sector Engineering</td>
<td>3 (3-0)</td>
<td>Graduate Standing</td>
</tr>
</tbody>
</table>
health care, and other sectors will be emphasized. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-832. Information Technology Management
Credit 3 (3-0)
This course focuses on productivity measurement and improvement of information technology and information system services. Other topics covered include the planning and control of human resources and budgets, as well as the planning of innovation, entrepreneurship and research and development, and the forecasting and justification of technology. Prerequisites: Consent of Instructor.

INEN-833. Supply Chain Systems Engineering
Credit 3 (3-0)
This course addresses the analysis and design of logistics and supply chain systems. Topics covered include: logistics and supply chain characterization, site location, mode selection, distribution planning, vehicle routing, demand management, replenishment management, geographic information systems and real-time logistics control issues. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-841. Linear and Nonlinear Optimization
Credit 3 (3-0)
This course addresses solution techniques for linear and integer programming problems, and nonlinear optimization. Topics addressed include initial basic feasible solutions, large-scale linear programs, column generation, scaling, Dantzig-Wolfe decomposition, interior point methods, integer programming models, branch and bound approaches, unconstrained multivariate optimization, and penalty methods. Applications to engineering and economic systems are discussed. Prerequisite: Consent of Instructor.

INEN-843. Queuing Theory
Credit 3 (3-0)
This course presents stochastic models and solution techniques for such models. Specific topics include elements of queuing systems, measures of performance, arrival processes, steady state analysis, stationary arrivals, controlling service processes, priority queues, and queuing networks. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-844. Reliability and Maintenance
Credit 3 (3-0)
This course reviews the statistical concepts and methods underlying procedures used in reliability engineering. Topics include the nature of reliability and maintenance, life failure and repair distributions, life test strategies, and complex system reliability including: series/parallel/standby components with preventive maintenance philosophy. Analytical models are emphasized. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-851. Integrated Manufacturing Control Systems
Credit 3 (3-0)
This course provides an advanced study of systems used for manufacturing execution and shop floor control. Traditional control and adaptive control algorithms and applications for manufacturing are explored. Integrated control system functions include scheduling, execution planning, supervisory control, human machine interface, process control, quality control, and information acquisition. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-852. Integrated Product and Process Design
Credit 3 (3-0)
This course provides an integrated approach to the design and manufacture of a new product. Topics include product requirements, concept generation and selection, design, product optimization, tolerances, prototype development, design for manufacturability and assembly, process optimization, and quality function deployment. Prerequisite: Graduate Standing.

INEN-853. Enterprise Integration
Credit 3 (3-0)
This course is directed toward development and contribution to the advancement of a unified framework for conceptualizing, designing, modeling, and operating advanced integrated manufacturing systems. It builds upon emerging developments in computer and communications technologies and conceptual breakthroughs regarding the nature and behavior of integrated enterprises. Prerequisites: Graduate Standing and Consent of Instructor.
INEN-854. Inventory and Warehouse Systems Credit 3 (3-0)
This course investigates the integration of inventory and warehouse systems. Quantitative models for inventory and warehouse layout/location are developed and solved. Computational tools and equipment in inventory and warehouse systems are reviewed. Application of supply chain and information technology concepts to strategic inventory and warehouse system integration is addressed. Prerequisite: Graduate Standing.

INEN 861. Nano/Micro- and Bio-Manufacturing Credit 3 (3-0)
This course addresses the translation of fundamental nano-and biotechnology concepts to practical industrial applications. Topics include the design, prototyping and development of nano/micro- and bio-manufacturing techniques. Supporting infrastructure, measurement tools, characterization devices, and positioning systems needed for nano/micro- and bio-manufacturing are discussed. Current state-of-the-art research areas are discussed. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-885. Advanced Special Topics in Industrial Engineering Credit 3 (3-0)
The course will address a current body of knowledge in Industrial Engineering with a research orientation. Term papers and projects will be required. Prerequisites: Graduate Standing and Consent of Instructor.

INEN-991. Doctoral Qualifying Examination Credit 1 (1-0)
This course will guide student to take the departmental Qualifying Examination. The examination will be administered towards the end of the semester. Pass/Fail evaluation only, no letter grade will be given. Prerequisite: Doctoral Standing in ISE.

INEN 992. Doctoral Seminar in Industrial Engineering Credit 1 (1-0)
The course will present potential dissertation topics and research work-in-progress by faculty members and doctoral students, and talks by eminent practitioners and researchers on classical and contemporary topics in Industrial Engineering. Pass/Fail evaluation only, no letter grade will be given. Prerequisite: Doctoral Standing in ISE.

INEN-993. Doctoral Supervised Teaching in Industrial Engineering Credit 3 (3-0)
This course will introduce the student to teaching courses under the guidance of a faculty member. This course will give the student experience in course planning, lecture preparation, classroom teaching, and student evaluation. Pass/Fail evaluation only; no letter grade will be given. Prerequisite: Doctoral Standing in ISE.

INEN-994. Doctoral Supervised Credit 3 (3-0)
This is supervised research under the direction of a member of the Graduate Faculty. This research should lead to the identification of a dissertation topic. Pass/Fail evaluation only; no letter grade will be given. Prerequisite: Doctoral Standing in ISE.

INEN-995. Doctoral Preliminary Credit 3 (3-0)
This course is for doctoral students who are preparing to take a written examination in their area of specialization. In this course dissertation supervisors will guide their students towards completing the Preliminary Exam. Pass/Fail evaluation only; no letter grade will be given. Prerequisites: Doctoral Standing in ISE and INEN 991.

INEN-997. Dissertation Variable Credit 1-6
This course provides the student an opportunity to complete a significant piece of original research, of their choice, in industrial engineering, under the supervision of a faculty advisor. Students are required to complete a dissertation proposal and a final defense in accordance with departmental guidelines. Prerequisites: Doctoral Standing in ISE and INEN 995.

INEN-999. Continuation of Dissertation Variable Credit 1 (1-1)
This course will enable doctoral students who have completed all required coursework and all dissertation credits, to complete their dissertation research. Prerequisites: Doctoral Standing in ISE.
Graduate Faculty

Department: Industrial and Systems Engineering
Chair: Dr. Paul Stanfield

Lauren Davis, Assistant professor, BS, Computational Mathematics, Rochester Institute of Technology; MSIME, Rensselaer Polytechnic Institute; Ph.D., North Carolina State University
Salil Desai, Assistant Professor, BSIE, University of Bombay, MSIE, Ph.D., University of Pittsburgh
Xiaochun Jiang, Assistant Professor, BS, East China Institute of Technology, MSIE, Nanjing University of Science & Technology, Ph.D., Clemson University
Daniel N. Mountjoy, Adjunct Associate Professor, BS, M.SIE, Wright State University; Ph.D., North Carolina State University
Celestine A. Ntuen, Professor, NCE (Mathematics/Physics) College of Education, UYO, Nigeria; BSIE, MSIE, Ph.D., West Virginia University
Steve Oneyear, Adjunct Associate Professor, BS, MS, University of Wisconsin
Eui H. Park, Professor, BS, Yonsei University; MBA, City University, MSIE, Ph.D., Mississippi State University
Xiuli Qu, BEEE, MSEE, University of Science and Technology Beijing; MSIE, Ph.D., Purdue University
Bala Ram, Professor/Professional Engineer, BS, MSIE, Indian Institute of Technology - Madras; Ph.D., State University of New York at Buffalo, Professional Engineer in NC.
Sanjiv Sarin, Professor/Professional Engineer; BScE, MSIE, Indian Institute of Technology - Delhi; Ph.D., University of New York at Buffalo, Professional Engineer in NC
Funda Samanlioglu, Assistant Professor, BSIE, Yildiz Technical University; MSIE, Ph.D., Clemson University
Younho Seong, Assistant Professor, BSIE, Inhwa University, MSIE, Ph.D., State University of New York at Buffalo
Paul Stanfield, Chairperson/Associate Professor/ Professional Engineer, BSEE, North Carolina State University; MBA, University of North Carolina at Greensboro; MSIE, Ph.D., North Carolina State University, Professional Engineer in NC
Silvanus J. Udoka, Associate Professor, BSIE, MSIE, Ph.D., Oklahoma State University
OBJECTIVE

The objectives of the Leadership Studies Graduate program are to provide theoretical and practical experiences that are essential for students pursuing a Doctor of Philosophy degree. The interdisciplinary Ph.D. emphasizes diversity, ethics, information technology, informed practice and research. In addition, the graduates of this doctoral program in Leadership Studies will realize the following interdisciplinary objectives:

1. Design, evaluate, and interpret the collection and analysis of data and their role in leadership and decision-making;
2. Critique and recommend technology to support the different components of leadership;
3. Recognize, develop and incorporate ethical judgment in leadership;
4. Recognize, value and integrate diversity for developing organizational effectiveness;
5. Understand theories of motivation and leadership as they influence ethical decision-making; and
6. Articulate a personal leadership vision that benefits the organization and the members.

Degree Offered
Leadership Studies – Doctor of Philosophy (Ph.D.)

Program Description

This is an interdisciplinary program designed for persons who desire positions of leadership in agriculture, business, industry, science, engineering, education, the military and medical fields, and who are interested and committed to conducting research in the field of Leadership Studies. The program enhances students’ scholarship in the field of leadership and contributes to the accumulation of new knowledge through research and application in the study of leadership. It fosters a scholar/practitioner approach in the preparation of leaders. The mission of the program is to expand the knowledge base of concepts and theories of leadership through application of research and experiences acquired in the program.

Degree Requirements

Students seeking to earn the Doctor of Philosophy in Leadership Studies degree are required to complete a minimum of 51 hours, 42 hours of coursework and nine hours of internship/research and dissertation writing. The program consists of 24 hours of core courses, nine hours of electives, nine hours of research courses, three hours of internship, three hours of dissertation research, and a minimum of three hours of dissertation writing. The 24 hours of core courses in Leadership Studies must be taken at North Carolina A&T State University.

The program is designed for full-time and part-time students. All students must complete the program within a six-year period.

Students must obtain and maintain a grade point average (GPA – 3.0) B or better in each of the courses completed towards the Ph.D. degree.

Transfer credit will be awarded a maximum of six credit hours in research courses or any elective courses completed beyond the master’s degree level. NO transfer credit will be awarded for Core Courses.
Admission Requirements

Candidates seeking admission to the Leadership Studies Program for the Doctor of Philosophy degree must meet the following requirements:

1. A master’s degree from a college or university recognized by a regional or general accrediting agency.
2. A minimum of five years of work experience at the executive or managerial level or a minimum of five years in Leadership Studies research.
3. A completed Graduate Record Exam (GRE) General Test, or the Graduate Management Admissions Test (GMAT), or the Miller Analogies Test (MAT) as applicable to the discipline area of the student.
4. An applicant with his/her highest degree from a non-English-speaking country is required to complete the Test of English as a Foreign Language (TOEFL) examination and obtain a score of 600 or higher on the written examination or at least 250 on the computer examination.
5. An applicant will be interviewed by an Admissions Committee as part of the admission requirements prior to recommendation for acceptance into the program.

Note: These requirements will be reviewed periodically and revisions made as appropriate.

Documentation Requirements

The following documents are to be submitted by all applicants.

1. Two official transcripts of all college-level academic work.
2. Three letters of recommendation (for study at master’s level) from professional associates or supervising faculty/professors from the degree granting institution.
3. An official copy of the GRE, GMAT, or MAT scores mailed directly to the University from the testing agency.
4. An official copy of the TOEFL score, if applicable, mailed directly to the University from the testing agency.
5. The completed application form and application fee stipulated by the School of Graduate Studies at NC A&T State University.
6. A Statement of Purpose (two pages and double-spaced) explaining the reasons for pursuing the Doctor of Philosophy degree in Leadership Studies and detailing professional work experience or leadership research background. The Statement will also be used to evaluate writing proficiency.

Candidacy

Following the successful documentation and completion of the internship as approved by the committee, the student will be admitted into candidacy for the interdisciplinary Ph.D. in Leadership Studies. The candidate will then enroll in three hours of supervised dissertation research and three hours of supervised dissertation writing and upon the successful defense of the dissertation, the candidate will be awarded the doctoral degree (Ph.D.) in Leadership Studies. Should the candidate require more than the six hours of dissertation research and writing, the candidate will enroll for additional hours provided the six-year limit has not been exceeded.

Dissertation Committee

The committee will have at least four members including the chair. At the end of eighteen hours of study, the students are required to select their four-person dissertation committee. This committee will be chaired by a faculty from the NC A&T State University. The additional committee members will consist of North Carolina A&T Faculty including eminent leaders and adjunct faculty and/or external members.
The Dissertation

The doctoral dissertation presents the results of the student’s original investigation in the field of major interest. It must be a contribution to knowledge, be adequately supported by data and be written in a manner consistent with the highest standards of scholarship. Publication is expected.

The dissertation will be reviewed by all members of the advisory committee and must receive their approval prior to submission to the School of Graduate Studies. Three copies of the document signed by all members of the student’s advisory committee must be submitted to the School of Graduate Studies by a specified deadline in the semester or summer session in which the degree is to be conferred. Prior to final approval, the dissertation will be reviewed by the School of Graduate Studies to ensure that the format conforms to its specifications.

The University has a requirement that all doctoral dissertations be microfilmed by University Microfilms International of Ann Arbor, Michigan, which includes publication of the abstract in Dissertation Abstracts International. The student is required to pay for the microfilming service.

Courses Description

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEST 800</td>
<td>Leadership Theories</td>
<td>3 (3-0)</td>
<td>This course explores the theoretical nature of leadership. The emphasis is on the application of theories of leadership in political, economic, social, and global contexts. A critical examination of the leadership literature and research are used to develop an appreciation for the contingency and interdisciplinary nature of leadership.</td>
</tr>
<tr>
<td>LEST 802</td>
<td>Decision-Making Theories and Strategies</td>
<td>3 (3-0)</td>
<td>This course focuses on the development and enhancement of strategic decision-making capabilities. It explores the theories and principles of executive decision-making processes such as qualitative decision-making models and techniques. A related emphasis is on effective communication with diverse groups, and implementation and evaluation of strategic decisions. Other topics include power and politics, managerial cognition, strategy formulation, organizational learning, organizational information processing, ethical decision-making, and the influence of technology on strategic decisions.</td>
</tr>
<tr>
<td>LEST 810</td>
<td>Ethics and Social Responsibility in Leadership</td>
<td>3 (3-0)</td>
<td>This course focuses on the ethical and legal dimensions of leadership, including multiple philosophies and theories. This course will provide an examination and interpretation of complex issues from the perspective of ethical leadership and diversity.</td>
</tr>
<tr>
<td>LEST 811</td>
<td>Human Behaviors and Relations</td>
<td>3 (3-0)</td>
<td>This course focuses on human relations theory and practice in various contexts. Emphasis is placed on the role of leaders as ethical change agents at the behavioral, interpersonal, organizational, and societal levels. Additionally, in-depth studies of human behavior theories will focus on human motivation, self-awareness, interpersonal skills and group dynamics, worldview, human relations, human interaction with technology, and personal and organizational diversity.</td>
</tr>
<tr>
<td>LEST 812</td>
<td>Contemporary Issues in Cultural Diversity</td>
<td>3 (3-0)</td>
<td>This course focuses on current issues in diverse cultures and the development of cultural understanding and knowledge of the literature, history, language, art, music, and social/political systems of a diverse culture.</td>
</tr>
<tr>
<td>LEST 820</td>
<td>Information Technology as a Leadership Tool</td>
<td>3 (3-0)</td>
<td>This course focuses on the interaction of information technology and society and how the functioning of organizations are both enhanced and constrained by information technology. Topics of study include the ethical use of technology, technology and decision making, technology as a management tool, technology as a teaming tool, technology as a leadership assessment and performance tool, and networks and the Internet.</td>
</tr>
<tr>
<td>LEST 840</td>
<td>Organizational Structure and Dynamics</td>
<td>3 (3-0)</td>
<td>This course examines the major theories in the study of effective organizational designs. The emphasis is on the creation and use of vertical and horizontal networks of interdependent and interrelated relationships among functional and operating units to provide the organization with adaptive capacity to respond effectively to a rapidly changing environment.</td>
</tr>
</tbody>
</table>
LEST 850 Leadership in the Global Economy and Society Credit 3 (3-0)
This course will focus on effective and ethical global leadership in the areas of decision-making, problem-solving, competencies for addressing relationships, communication, teambuilding, leading visions into actions. Additionally, the course will emphasize stress and conflict management, interdependent thinking, valuing the ability to advance the work of the institution’s place in global society, communities and cultural awareness technology and global perspectives.

LEST 860 Qualitative Research Credit(3-0)
This course focuses on methods and tools of inquiry of qualitative research, including but not limited to developing case studies, surveys, interviews and narrative observations. Strategies for determining the intertextuality of trends and relationships as revealed in the research will be developed.

LEST 861. Computer Aided Research (prerequisite Basic Research) Credit 3 (3-0)
This course focuses on three areas of application of the computer in research: development and literature reviews, data collection and statistical analysis, and the presentation of findings, conclusions, and recommendations. Students will develop a synthesis of knowledge and skill in applying the computer as a tool for research.

LEST 862. Quantitative Research Credit 3 (3-0)
This course provides a fundamental introduction to the field of quantitative research through the development of a knowledge base and an application of research skills and methodologies required to select, read, and interpret relevant professional literature.

LEST 863. Statistical Applications and Interpretations Credit 3 (3-0)
This course will focus on research and case study design emphasizing implementation strategies that address organizational policies and practice. A review of paradigm shifts and an analysis of literature in the study of cultural and technological influences. In addition, the course will enhance students’ understanding of how various public, private and corporate agencies are changed based on the governance and administration.

LEST 870. Internship in Leadership Credit 3 (3-0)
This course provides inquiry, exploration, and hands-on opportunities to observe and participate in leadership decisions. The internship will be one of professional practice internship in a leadership environment. The internship will be with a recognized business, industry, government or non-governmental leader or in an organization that emphasizes leadership. It will inform the student of current practice and lead to the dissertation research.

LEST 885. Special Topics Credit 3 (3-0)
This course allows the introduction of new topics on a trial basis at the doctoral level. The topic of this course will be determined prior to registration.

LEST 900. Dissertation Research Credit 3 (3-0)
This course focuses on the development of the dissertation proposal. The dissertation research is embedded in the internship experience that ensures a comprehensive application and utilization of research.

LEST 930. Dissertation Writing Credit 3 (3-0)
Dissertation writing is the culminating course in the student’s doctoral program. The student will demonstrate high levels of scholarly and intellectual activity. Dissertation writing is an original contribution to knowledge in the field of study through disciplined inquiry. This course prepares a student for conducting, writing, and defending the dissertation in accordance with the highest professional standards.

LEST 991. Doctoral Qualifying Examination Credit 3 (3-0)
This course will guide the student to take the qualifying examination. The qualifying examination will consist of a written examination over the Leadership Studies program core courses. Grading is pass/fail evaluation only.

LEST 999. Continuation of Doctoral Dissertation Credit 1 (1-0)
This course is a continuation of LEST 930. This course is for doctoral students who have completed all credit course hour requirements.
LIST OF GRADUATE COURSES

The Leadership Core – (24 Credit Hours)
LEST 800 - Leadership Theories *
LEST 802 - Decision-Making Theories and Strategies *
LEST 810 - The Role of Ethics in Leadership *
LEST 811 - Human Behaviors and Relations *
LEST 812 - Contemporary Issues in Cultural Diversity *
LEST 820 - Information Technology as a Leadership Tool *
LEST 840 - Organizational Structure and Dynamics *
LEST 850 - Leadership in the Global Economy and Society *

Research Preparation Courses – (18 Credit Hours)
LEST 860 – Qualitative Courses **
LEST 861 – Computer Assisted Research **
LEST 862 – Quantitative Research **
LEST 863 – Statistical Applications and Interpretations**
LEST 870 – Internship in Leadership **
LEST 900 – Dissertation Research **
LEST 930 – Dissertation Writing **
LEST 999 – Continuation of Doctoral Dissertation**

Elective Discipline Courses – (9 Credit Hours)

School of Agricultural and Environmental Sciences
AGED 710 - Program Design, Management, and Evaluation***
AGED 797 - Agricultural Education Program Management Plan Project***

School of Business and Economics
BUAD 712 - Foundations of Enterprise Management***
BUAD 713 - Business Applications Development***
BUAD 715 - Quantitative Business Analysis***
BUAD 716 - Strategic Marketing***
BUAD 718 - Management and Organizational Analysis***
BUAD 730 - Human Resources Management***
BUAD 735 - Contemporary Issues in Human Resources Management***
BUAD 736 - Human Resources Management Strategy***
BUAD 746 - E-Business and E-Commerce Management***
TRAN 701 - Strategic Logistics Management***
TRAN 725 - Purchasing and Materials Management***
TRAN 727 - Global Supply Chain Management***

School of Education
ADED 773 - Leadership***
CUIN 709 - Administration and Supervision***
CUIN 711 - Research and Inquiry***
CUIN 716 - Media Center Management***
CUIN 767 - Computer Lab Supervision and Management***
MSA 771 - Diversity Issues in Administration***
MSA 772 - Administration, Management, and Supervision***
MSA 773 - Issues in Educational Administration***
MSA 774 - Curriculum and Instructional Leadership***
MSA 776 - Law, Policy, and Politics of Education***
MSA 777 - Ethical and Societal Aspects of Educational Leadership***
MSA 778 - The Principalship***
College of Engineering
AREN 753 - Building Facilities Planning and Project Management***
AREN 755 - Computer-Aided Project Management***
AREN 770 - Energy Management Planning***
INEN 721 - Systems Engineering Models***
INEN 731 - Engineering Cost Control***
INEN 735 - Human-Computer Interface***
INEN 813 - Cognitive Systems Engineering***
INEN 814 - Advanced Topics in Human-Machine Systems***
INEN 821 - Multivariate Statistics for Engineers***
INEN 822 - Advanced Systems Simulation***
INEN 831 - Service Sector Engineering***
INEN 832 - Information Technology Management***
INEN 833 - Supply Chain Systems Engineering***
INEN 831 - Service Sector Engineering***
INEN 832 - Information Technology Management***
INEN 833 - Supply Chain Systems Engineering***
INEN 853 - Enterprise Integration***

School of Technology
ECT 730 - Systems Integration for Telecommunications Managers***
GCS 733 - Graphic Communications Organization and Management***
MFG 775 - Production Management and Control***
MSIT 740 - Leadership Development Seminar***
MSIT 790 - Research Methods***
TECH 767 - Research and Literature in Technological Education***
TECH 768 - Technological Seminar***
TECH 770 - Systematic Design of Training and Development for Industry***

* = Core Courses required for all students – No Transfer
** * = Research Preparation and Dissertation Courses
*** = Elective Courses (Discipline Specialization)

Graduate Faculty

Program: Leadership Studies – Doctor of Philosophy
Director: Dr. Alexander Erwin

Chi Anyansi-Archibong, B.S., Accounting and Business Administration; M.B.A., Business Administration, University of Kansas; Ph.D., Strategic Management/Business Policy, University of Kansas; Professor
Antoine Alston, B.S., Agricultural Education, North Carolina A&T State University; M.S., Agricultural Education, North Carolina A & T State University; Ph.D., Agricultural Education, Iowa State University; Assistant Professor
Elizabeth Barber, B.A., Virginia Western Community College / Roanoke College, English, Psychology and Education, M.S. / Ph.D., Virginia Tech, Literacy Studies
James Battle, Ed.D., Nova Southeastern University; Ed.S., University of North Carolina at Greensboro; M.S., Administration, North Carolina A&T State University; M.S., Counseling, North Carolina A&T State University; B.S., History, North Carolina A&T State University; Assistant Professor
Sylvia Sloan Black, B.S., Physics, Howard University ; M. S., Computer Science, University of North Carolina - Chapel Hill; M.B.A., Business Administration, University of Kansas; Ph.D., Strategic Management, Columbia University;
David Boger, B.S., Chemistry, Livingstone College; M.S., Natural Science, New Mexico Highlands University; Ph.D., Curriculum and Instruction, University of New Mexico; Professor
Judie Bucholz, B.S., Psychology, University of Maryland; M.A., Human Relations, University of Oklahoma; M.A., Organization Development, The Fielding Graduate Institute; M.A., Technology, Kent State University; Ph.D., Human and Organizational
Systems, The Fielding Graduate Institute; Assistant Professor
William Carden, B.A., Psychology, University of South Alabama; M.S., Business Administration, Memphis State University; Ph.D., Business Administration, The University of Memphis; Assistant Professor
William Craft, B.S., Physics/Applying Mathematics, N.C. State University; M.S., Engineering Mechanics, Clemson University; Ph.D., Engineering Mechanics, Clemons University; Professor
Jane Davis-Seaver, Ph.D., Curriculum and Teaching, University of North Carolina at Greensboro; Associate Professor
Derrick Dunn, B.S., Mathematics, N.C. A&T State University; B.S., Electrical Engineering, N.C. A&T State University; M.S., Electrical Engineering, Virginia Polytechnic Institute and State University; M.S., Mathematics, Virginia Polytechnic Institute and State University; Ph.D., Electrical Engineering, Virginia Polytechnic Institute and State University; Associate Professor
Alexander Erwin, B.A., Social Sciences Education, Livingstone College; M.A., School Administration/Supervision and Social Studies, Appalachian State University; Ed.S., Administration and Curriculum Development, Appalachian State University; Ed.D., Educational Administration and Curriculum/Supervision, Virginia Polytechnic Institute and State University; Director, Leadership Studies/Professor
Albert Esterline, B.A., Philosophy, Lawrence University; Ph.D., Philosophy, University of St. Andrews; M.S., Mathematics, University of Minnesota; Ph.D., Computer Science, University of Minnesota; Associate Professor
Angela Evans-Everett, B.S., Special Education, East Carolina University; M.Ed., Special Education, East Carolina University; M.Ed., Educational Leadership and Policy, North Carolina A&T State University; Ed.S., Administration, University of North Carolina at Greensboro; Ed.D., Education Leadership and Cultural Foundations, University of North Carolina at Greensboro
Edward Fort, B.S., Wayne State University; M.S., Wayne State University; Ed.D., Educational Administration/Leadership, University of California; Chancellor Emeritus, Professor
William Gentry, B.S., Psychology, Emory University; M.S., University of Georgia, Psychology, Ph.D., University of Georgia, Psychology, Adjunct Professor
J. Phillip Halstead, B.A., History, Florida State University; M.S., Higher Education Administration, Florida State University; Ph.D., Higher Education Administration, Florida State University
Lorna Harris, B.S., Nursing, N.C. A&T State University; M.S., Public Health Nursing/Education, University of North Carolina at Chapel Hill; Ph.D., Public Administration/Public Policy Analysis, University of North Carolina at Chapel Hill; Professor
Karen Hornsby, B.A., Philosophy, Humanities, Religious Studies, California State University; M.A., Applied Philosophy, Bowling Green State University; Ph.D., Applied Philosophy, Bowling Green State University; Assistant Professor
William James, Ph.D. Industrial Technology, University of Northern Iowa; Associate Professor
Xiaochun Jiang, B.S., Mechanical Engineering, East China Institute of Technology; M.S., Manufacturing Engineering, Nanjing University of Science and Technology; Assistant Professor
Olenda Johnson, B.S., Business Administration/Marketing, Florida A&M University; M.B.A., Finance, Florida A&M University; Ph.D., Organizational Behavior, University of Pittsburgh; Associate Professor
Jung Kim, B.S., Electronics Engineering, Yonsei University; M.S., Electrical Engineering, North Carolina State University; Ph.D., Electrical and Computer Engineering, North Carolina State University; Professor
Wyatt D. Kirk, B.S., M.S., Ed.D., Western Michigan University; Professor and Chairperson
John Martin, B.S., Biology/Science Education, Warren Wilson College; M.S., Technology Education, West Virginia University; Ph.D., Technology Education/Resource Management, West Virginia University; Assistant Professor
Cynthia McCauley, B.A., King College, Psychology, M.A. / Ph.D., University of Georgia, (I/O) Psychology
Laura McQueen, Ph.D., Curriculum and Instruction/Education/ Leadership and Cultural Studies, University of North Carolina at Greensboro; Assistant Professor
Daniel Miller, B.A., University of Nebraska, Psychology, M.S. / Ph.D., Cornell University Educational Administration / Organizational Behavior
Daniel Mountjoy, B.S., Systems Engineering/Human Factors, Wright State University, M.S., Systems Engineering/Human Factors, Wright State University; Ph.D., Industrial Engineering/Ergonomics, North Carolina State University; Assistant Professor
Celestine Ntuen, B.S., Industrial Engineering, West Virginia University; M.S., Industrial Engineering, West Virginia University; Ph.D., Industrial Engineering, West Virginia University; Professor
Devdas Pai, B.Tech, Mechanical Engineering, Indian Institute of Technology, M.S., Mechanical Engineering, Arizona State University; Ph.D., Mechanical Engineering, Arizona State University; Professor
Chester F. Preyar, B.S., Secondary Education, Miami University; M.Ed., Educational Administration, Xavier University; Ed.D., Educational Administration and Social Psychology, University of Cincinnati
Edna Ragins, B.S., Business Administration/Management, Hampton University; M.S., Marketing, University of Wisconsin; Ph.D., Business Administration/Marketing and Communications, Florida State University; Associate Professor
Judy Rashid, B.S., Psychology, North Carolina A&T State University; M.S., Educational Media, North Carolina A&T State University; Ed.D., Higher Education Administration, North Carolina State University
Younho Seong, B.S., Industrial Engineering, Inha University; M.S., Industrial Engineering, Inha University; M.S., Industrial and Operations Engineering, University of Michigan; Ph.D., Industrial Engineering, S. University of New York; Assistant Professor
Paul Stanfield, B.S., Electrical Engineering, North Carolina State University; M.B.A., Business Administration, University of North Carolina at Greensboro; M.S., Industrial Engineering/Operations Research, North Carolina State University; Ph.D., Industrial Engineering, North Carolina State University; Assistant Professor
James Steele, B.A., Morgan State; M.A., Political Science, Atlanta University; Ph.D., Political Science, Atlanta University; Associate Professor
Silvanus Udoka, B.S., Manufacturing Engineering Technology, Weber State University; M.S., Industrial Engineering and Management, Oklahoma State University; Ph.D., Industrial Engineering and Management, Oklahoma State University; Associate Professor
Isaiah Ugboro, B.S., Finance, Utah State University; M.B.A., Administrative Management, University of North Texas; Ph.D., Business Administration, University of North Texas; Professor
Ellen Van Velsor, B.A., Southern New York University, Sociology, M.A., University of Florida, Sociology, Ph.D., University of Florida, Sociology, Adjunct Professor
Miriam Wagner, B.A., English Literature, University of North Carolina at Chapel Hill; B.A., Psychology, University of North Carolina at Chapel Hill; M.S., School Counseling, North Carolina A&T State University; M.S., Human Development, North Carolina A&T State University; Ph.D., Community Counseling, University of North Carolina at Greensboro; Associate Professor
Elizabeth Darby Watson, B.S., Psychology, Columbia Union College; M.S., Social Work, Howard University; Ph.D., Leadership, Andrews University School of Education
Lea E. Williams, B.A., Elementary Education, Kentucky State University; M.S., Curriculum and Instruction, University of Wisconsin-Milwaukee; M.A., Educational Systems Computer Specialist, Columbia University; Ed.D., Higher and Adult Education, Columbia University-Teachers College
OBJECTIVE

The Department of Business Administration offers a program of study leading to the Master of Science in Management degree with a major concentration in Management Information Systems (MIS). The program prepares students and professionals for careers in public and private sector positions in information systems management or to apply MIS concepts to other business disciplines.

DEGREE OFFERED

Master of Science in Management – Management Information Systems

GENERAL PROGRAM REQUIREMENTS

The general requirements for admission are an undergraduate degree from an accredited institution with a grade point average of 2.6 (on a 4.0 scale), and a satisfactory GMAT score. Applicants who do not meet the requirements will be considered on an individual basis. A GPA of 3.0 is required for graduation.

PROGRAM REQUIREMENTS

Students with a variety of undergraduate majors are encouraged to apply. The program is designed to appeal to those who either currently work in industry or desire to affiliate with firms or organizations using cutting-edge tools to deliver their products or services. Students in the program will have a business undergraduate degree and wish to study a particular area in greater depth, or have a non-business degree with the personal or professional interests or experiences that would be enhanced by a high quality graduate program in management education.

The program requires a minimum of 36 semester hours. There is no thesis requirement. Students without an undergraduate business degree will be required to take appropriate foundation courses, which may extend the requirements to 48 semester hours. The program consists of 18 hours of core courses and 18 hours of coursework, including one 3-hour elective, in the MIS concentration.

The student pursuing the Master of Science in Management with a major concentration in MIS is required to complete a common core of courses consisting of:

- ACCT 714 Managerial Accounting & Finance 3 semester hours
- BUAD 713 Business Applications Development 3 semester hours
- BUAD 715 Quantitative Business Analysis 3 semester hours
- BUAD 716 Strategic Marketing 3 semester hours
- BUAD 718 Management & Organization Analysis 3 semester hours
- ECON 608 Managerial Economics 3 semester hours

ELECTIVE One course selected from the following:

- ACCT 643 Advanced Income Tax Accounting 3 semester hours
- BUAD 719 Information Systems Planning & Design 3 semester hours

Courses in the MIS concentration will consist of the following:

- BUAD 740 Business Process Management and the Digital Firm 3 semester hours
- BUAD 742 Telecommunication Systems Management 3 semester hours
- BUAD 744 Enterprise Data Modeling 3 semester hours
- BUAD 746 E-Business and E-Commerce 3 semester hours
- BUAD 748 MIS Projects 3 semester hours
Students without an undergraduate business degree will be required to take appropriate foundation courses, which consist of the following.

- **ACCT 708 Seminar in Financial Concepts**
 3 semester hours
- **BUAD 705 Methods in Business Analysis**
 3 semester hours
- **BUAD 712 Foundation of Enterprise Management**
 3 semester hours
- **ECON 706 Seminar in Economics**
 3 semester hours

LIST OF GRADUATE COURSES

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 643 Advanced Income Tax Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 708 Seminar in Financial Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 714 Managerial Accounting & Finance</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 705 Methods in Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 712 Foundation of Enterprise Management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 713 Business Applications Development</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 715 Quantitative Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 716 Strategic Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 718 Management & Organization Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 719 Information Systems Planning & Design</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 740 Business and Process Management and the Digital Firm</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 742 Telecommunication Systems Management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 744 Enterprise Data Modeling</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 746 E-Business and E-Commerce</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 748 MIS Projects</td>
<td>3</td>
</tr>
<tr>
<td>ECON 608 Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 706 Seminar in Economics</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSES WITH DESCRIPTION IN BUSINESS ADMINISTRATION

BUAD-705. Seminar in Business Analysis
Credit 3 (3-0)
This course focuses on building an understanding of mathematical analysis techniques necessary to solve complex business problems from a wide range of business areas, including inventory, customer service, sales, and quality management. Basic statistical concepts and statistical process improvement are covered. Students will use a variety of computer software packages including Microsoft Excel and SPSS.

BUAD-712. Foundations of Enterprise Management
Credit 3 (3-0)
This course provides an understanding of key themes related to successful enterprise management, and discussions of the interpersonal and intellectual skills necessary to contribute to a highly competitive and globalized business environment. Topics include the globalization of commerce, marketing and market systems, competitive strategy, perspectives on legal and ethical business conduct, information technology, and the elements of quality. Individual and team competencies are developed using materials that involve interpersonal skills, problem-solving, and case analysis.

BUAD 713. Business Applications Development
Credit 3 (3-0)
This course focuses on use of object-oriented programming to develop applications for business solutions. Topics include user-interface design, basic programming logic and techniques, database concepts, and database applications.

BUAD 715. Quantitative Business Analysis
Credit 3 (3-0)
This course familiarizes students with basic quantitative techniques for decision-making in all business functions. Specific topics will include data collection and presentation; basic descriptive statistics and probability; discrete and continuous probability distributions; confidence intervals; business forecasting; linear and multiple regression models; linear and integer programming; and computer simulation. Emphasis will be on the application of these techniques for managerial decision-making. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.
BUAD-716. Strategic Marketing Credit 3 (3-0)
This course provides in-depth examination of the role of marketing in strategic planning and decision-making. Students develop skills critical to directing business-unit marketing strategy and designing or reengineering a customer-driven organization. The course content emphasizes cases and readings. It also exposes students to emerging issues in marketing strategy including relationship marketing and e-commerce. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-718. Management and Organizational Analysis Credit 3 (3-0)
This course is a study of formal organizations as rational, organic, open systems and their behavior in response to an ever-changing, global and domestic environment. It covers macro and micro theories of management and organizations and their application to organizational design and processes. Organizational effectiveness, strategic planning and control, structural designs, leadership, motivation, globalization, and corporate politics and culture are studied through extensive reading, case studies, exploratory research and seminar discussions. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD 719. Information Systems Planning and Design Credit 3 (3-0)
This course provides students with an understanding of the concepts of planning, analysis, design, and implementation of modern information systems and information architectures. Project planning and design issues will be discussed in terms of the traditional systems development life cycle, business object models, object oriented analysis and design, and process analysis. Students will use a variety of contemporary tools such as Unified Modeling Language (UML), Computer Aided Software Engineering (CASE), Business Process Management (BPM) and Project Management in their project work. Prerequisite: BUAD 713

BUAD-740. Business Process Management and the Digital Firm Credit 3 (3-0)
This is an applied course in information systems concepts and techniques used in business process management (BPM) in an e-business environment. Topics will include tools to assist BPM such as Six Sigma, Balanced Scorecard, Object-Oriented analysis, Activity Decision flow, Resource-Event-Agent and other contemporary continuous process improvement approaches. The implementation issues of organizational fit and innovation diffusion will be discussed along with security and ethics. Prerequisites: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-742. Telecommunications Systems Management Credit 3 (3-0)
This course provides in-depth coverage of data communications applications and the management of telecommunications hardware and software. Emphasis is on analysis and design of networking applications, management of telecommunications networks, and evaluation of connectivity options. Topics to be covered include: telecommunications devices, media systems, network hardware and software, network configuration, network applications, cost-benefit analysis, topologies and reliability. Students will work with assembling and testing networks in a network laboratory. Prerequisite: ACCT 708, BUAD 705, BUAD 712 and ECON 706.

BUAD-744. Enterprise Data Modeling Credit 3 (3-0)
This course is designed to teach new forms of information and data modeling, take advantage of rich computer media, and a variety of conceptual approaches such as Object Role Modeling, Unified Modeling Language, and Entity Relationship Modeling. The role of data modeling in subsequent activities of an information technology project will be explored including business intelligence and competitive intelligence. Students will translate conceptual models into workable logical and physical designs resulting in a data base implementation. Prerequisites: BUAD 740 or BUAD 742.
BUAD-746. E-Business and E-Commerce Management Credit 3 (3-0)
This course is a comprehensive overview of building and managing an e-business. Topics examined include: the decision to bring a business online, choosing a business model, developing a business plan, accepting payments, marketing strategies, and security. A complete web-based e-business storefront will be designed and developed based on a viable business model and marketing plan. Prerequisites: BUAD 740 or BUAD 742.

BUAD-748. MIS Projects Credit 3 (3-0)
This course provides an in-depth practical application of the techniques used in the development of information technology-based solutions. Using current systems analysis and project management techniques, students will plan, design and implement a software project. Students may work in faculty-supervised teams with a sponsoring business. Typical project deliverables include: analysis and evaluation of existing business processes, evaluation of alternative solutions, system functional and data design, interface design, and a project implementation plan. Prerequisites: BUAD 740, BUAD 742 and BUAD 744 or BUAD 746.

Graduate Faculty

Department: Business Administration
Chair: Dr. Edna J. Ragins

Obasi Akan, B.A. Howard University; M.S. Case Western Reserve University; Ph.D. Case Western Reserve University; Assistant Professor
Hayward P. Andres, B.S., Southern University; M.S., University of West Florida; Ph.D., Florida State University; Associate Professor
Robert J. Angell, B.S., B.A., University of North Carolina at Chapel Hill; M.B.A., University of Virginia; D.B.A., Florida State University; Professor
Chiekwu Anyansi-Archibong, B.S., M.B.A., Ph.D., University of Kansas; Professor
Amanda Harmon Cooley, B.A. University of North Carolina at Chapel Hill; J.D. University of North Carolina at Chapel Hill; Assistant Professor
Kathryn E. Dobie, B.M., Wittenburg University; A.S., Dalton College; M.B.A., University of Central Arkansas; Ph.D., University of Memphis; C.P.M.; Professor
Marka Fleming, B.S. Wake Forest University; J.D. North Carolina Central University; Assistant Professor
Roger J. Gagnon, B.S., Boston University; M.B.A., Clark University; Ph.D., University of Cincinnati; Associate Professor and Director-Master of Science in Management Program
Lawrence M. Glisson, B.S., M.A., East Carolina University; M.B.A., Ph.D., The American University; C.P.M., Professor
Rhonda L. Hensley, B.S., M.B.A., James Madison University; Ph.D., Virginia Commonwealth University; Associate Professor
Susan Houghton, B.A. Yale University; M.B.A. University of North Carolina at Chapel Hill; Ph.D. University of North Carolina at Chapel Hill; Associate Professor
Robert L. Howard, B.A., Williams College; M.B.A., University of Chicago; Ph.D., The Ohio State University; Associate Professor
Alice M. Johnson, B.A., Winston-Salem State University; M.S., Winthrop University; Ph.D., University of Kentucky; Assistant Professor
Olenda Johnson, B.S., M.B.A., Florida A&M University; Ph.D., University of Pittsburgh; Associate Professor
Mary R. Lind, B.S., Duke University; M.B.A., Ph.D., University of North Carolina at Chapel Hill; Professor
Thaddeus McEwen, B.S., College of Arts, Science and Technology, Jamaica; M.S., Ph.D., Southern Illinois University at Carbondale; Professor
Kimberly R. McNeil, B.S., North Carolina A&T State University; Ph.D., Florida State University; Associate Professor
Angela K. Miles, B.A., University of Virginia; M.B.A., University of Wisconsin-Madison; Ph.D., Florida State University; Assistant Professor
Shona D. Morgan, B.S., Spelman College; M.S., Ph.D., North Carolina State University; Assistant Professor
Japhet H. Nkonge, B.A., North Carolina A&T State University; M.B.A., Rutgers University; Ph.D., University of North Carolina at Chapel Hill; Professor
Edna J. Ragins, B.S., Hampton University; M.S., University of Wisconsin; Ph.D., Florida State University; Associate Professor & Chairperson
Alonzo Redmon, B.S., University of Missouri at Columbia; M.B.A., Indiana University; Ph.D., University of North Carolina at Chapel Hill; Associate Professor
Patrick Rogers, BSBA, M.B.A., Western Carolina University; Ph.D., University of Tennessee at Knoxville; Associate Professor
Alice Stewart, B.B.A., M.B.A., University of Kentucky; Ph.D., University of North Carolina at Chapel Hill; Associate Professor
Joanne M. Sulek, B.S., M.A., Wake Forest University; Ph.D., University of North Carolina at Chapel Hill; Professor
George S. Swan, B.A., The Ohio State University; J.D., University of Notre Dame; LL.M., S.J.D., University of Toronto Faculty of Law; Associate Professor
Silvanus Udoka, B.S., Weber State University; M.S., Ph.D., Oklahoma State University; Associate Professor
Isaiah O. Ugboro, B.S., Utah State University; M.B.A., Ph.D., University of North Texas; Professor
OBJECTIVE

The School of Graduate Studies through the Department of Mathematics offers two curricula leading to the Master of Science in Education. One is intended primarily for individuals who teach mathematics at the middle school or high school level and the other is intended for individuals who teach mathematics at the high school or two-year college level. In addition, it offers a program of studies leading to the M.S. degree in Applied Mathematics.

DEGREES OFFERED

Master of Science - Mathematics Education
Master of Science - Applied Mathematics

GENERAL ADMISSION REQUIREMENTS

Mathematics Education and Applied Mathematics students must follow the general admission requirements for graduate studies; Mathematics Education students must also satisfy the following criteria for admission to the program.

- A Bachelor’s degree in Mathematics or a related field from an accredited institution.
- North Carolina “A” license in Secondary Mathematics or the equivalent from another state or eligibility to hold an “A” certification.
- An undergraduate GPA of 2.60 overall or 3.0 in the junior/senior years.
- Three (3) letters of recommendation.
- Official scores on GRE (Graduation Record Examination) or the MAT (Miller Analogies Test). Tests must be taken within the last five (5) years.

DEPARTMENTAL REQUIREMENTS

In addition to meeting general requirements specified above, a student seeking admission to a graduate program in the Department of Mathematics must have earned thirty (30) semester hours in mathematics including differential and integral calculus, linear algebra and differential equations. A student who fails to meet these requirements will be expected to enroll in appropriate undergraduate courses before beginning his graduate studies in mathematics. A student may not receive graduate credit for a course that is equivalent to one for which he received a grade of “C” or above as an undergraduate.

MATHEMATICS EDUCATION CURRICULUM

Students may select either the thesis or non-thesis option. Each option requires a total of thirty-nine (39) semester hours: fifteen (15) semester hours in Professional Education, twenty one (21) semester hours in Mathematics, and three (3) semester hours of electives. All Mathematics Education students must complete the core courses specified in the description of general requirements for a Master of Science in Education. The five (5) core Professional Education courses required are as follows:

<table>
<thead>
<tr>
<th>Courses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUIN 619</td>
<td>Learning Theories</td>
</tr>
<tr>
<td>CUIN 711</td>
<td>Research and Inquiry</td>
</tr>
<tr>
<td>CUIN 721</td>
<td>Advanced Methods and Internship</td>
</tr>
<tr>
<td>CUIN 728</td>
<td>Technology Across the Curriculum</td>
</tr>
<tr>
<td>CUIN 729</td>
<td>Diversity</td>
</tr>
</tbody>
</table>
Each Mathematics Education student must complete at least one (1) course from each of the five (5) major areas of study. Students completing the High School Curriculum must take a minimum of one (1) 700 level course in Mathematics. Students completing the High-School-2 year College Curriculum must take a minimum of three (3) 700 level courses in Mathematics.

The five major areas of study include:
1. Algebra:
 - MATH 602 Modern Algebra
 - MATH 612 Advanced Linear Algebra
 - MATH 665 Principles of Optimization
 - MATH 712 Numerical Linear Algebra
 - MATH 717 Special Topics in Algebra
2. Analysis:
 - MATH 603 Introduction to Real Analysis
 - MATH 610 Complex Variables I
 - MATH 611 Complex Variables II
 - MATH 620 Elements of Set Theory and Topology
 - MATH 650 Ordinary Differential Equations
 - MATH 651 Partial Differential Equations
 - MATH 700 Theory of Functions of a Real Variable I
 - MATH 701 Theory of Functions of a Real Variable II
 - MATH 710 Theory of Functions of a Complex Variable I
 - MATH 711 Theory of Functions of a Complex Variable II
 - MATH 720 Special Topics in Analysis
 - MATH 751 Solution Methods in Integral Equations
 - MATH 752 Calculus of Variations and Control Theory
3. Geometry:
 - MATH 604 Modern Geometry for Secondary School Teachers
 - MATH 715 Projective Geometry
4. Statistics:
 - MATH 608 Methods of Applied Statistics
 - MATH 623 Probability Theory and Applications
 - MATH 624 Theory and Methods of Statistics
 - MATH 706 Categorical Data Analysis
 - MATH 708 Nonparametric Statistics
 - MATH 721 Multivariate Statistical Analysis
 - MATH 731 Advanced Numerical Methods
5. Applications of Technology in Mathematics:
 - MATH 601 Technology and Applications in Secondary School Mathematics
 - MATH 608 Methods of Applied Statistics
 - MATH 624 Theory and Methods of Statistics
 - MATH 631 Linear and Non-Linear Programming
 - MATH 665 Principles of Optimization
 - MATH 706 Categorical Data Analysis
 - MATH 708 Nonparametric Statistics
 - MATH 712 Numerical Linear Algebra
 - MATH 721 Multivariate Statistical Analysis
 - MATH 731 Advanced Numerical Methods
 - MATH 765 Optimization Theory and Applications

Other Requirements:
1. Thesis or Research Project or Portfolio
2. Comprehensive Examination in Mathematics
3. Comprehensive Examination in Education

APPLIED MATHEMATICS CURRICULUM

A student seeking the Master of Science in Applied Mathematics must complete the following:
1. At least fifteen semester hours of 700-level courses in either mathematics or an applications
area of mathematics.
2. A minimum of eighteen semester hours of credit in the Department of Mathematics.
3. A thesis or a project.
4. A minimum of thirty semester hours of graduate credit for the thesis option and a minimum of 33 semester hours of graduate credit for the project option.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 600</td>
<td>Introduction to Modern Mathematics for Secondary School Teachers</td>
</tr>
<tr>
<td>MATH 601</td>
<td>Technology and Applications in Secondary School Mathematics</td>
</tr>
<tr>
<td>MATH 602</td>
<td>Modern Algebra</td>
</tr>
<tr>
<td>MATH 603</td>
<td>Introduction to Real Analysis</td>
</tr>
<tr>
<td>MATH 604</td>
<td>Modern Geometry for Secondary School Teachers</td>
</tr>
<tr>
<td>MATH 606</td>
<td>Mathematics for Chemists</td>
</tr>
<tr>
<td>MATH 607</td>
<td>Theory of Numbers</td>
</tr>
<tr>
<td>MATH 608</td>
<td>Methods of Applied Statistics</td>
</tr>
<tr>
<td>MATH 610</td>
<td>Complex Variables I</td>
</tr>
<tr>
<td>MATH 611</td>
<td>Complex Variables II</td>
</tr>
<tr>
<td>MATH 612</td>
<td>Advanced Linear Algebra</td>
</tr>
<tr>
<td>MATH 620</td>
<td>Elements of Set Theory and Topology</td>
</tr>
<tr>
<td>MATH 623</td>
<td>Probability Theory and Applications</td>
</tr>
<tr>
<td>MATH 624</td>
<td>Theory and Methods of Statistics</td>
</tr>
<tr>
<td>MATH 625</td>
<td>Mathematics for Elementary School Teachers I</td>
</tr>
<tr>
<td>MATH 626</td>
<td>Mathematics for Elementary School Teachers II</td>
</tr>
<tr>
<td>MATH 631</td>
<td>Linear and Non-Linear Programming</td>
</tr>
<tr>
<td>MATH 632</td>
<td>Games and Queuing Theory</td>
</tr>
<tr>
<td>MATH 633</td>
<td>Stochastic Processes</td>
</tr>
<tr>
<td>MATH 650</td>
<td>Ordinary Differential Equations</td>
</tr>
<tr>
<td>MATH 651</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 652</td>
<td>Methods of Applied Mathematics</td>
</tr>
<tr>
<td>MATH 665</td>
<td>Principles of Optimization</td>
</tr>
<tr>
<td>MATH 675</td>
<td>Graph Theory</td>
</tr>
<tr>
<td>MATH 691</td>
<td>Special Topics in Applied Mathematics</td>
</tr>
<tr>
<td>MATH 700</td>
<td>Theory of Functions of a Real Variable I</td>
</tr>
<tr>
<td>MATH 701</td>
<td>Theory of Functions of a Real Variable II</td>
</tr>
<tr>
<td>MATH 705</td>
<td>Graduate Seminar</td>
</tr>
<tr>
<td>MATH 706</td>
<td>Categorical Data Analysis</td>
</tr>
<tr>
<td>MATH 708</td>
<td>Nonparametric Statistics</td>
</tr>
<tr>
<td>MATH 709</td>
<td>Discrete Mathematics</td>
</tr>
<tr>
<td>MATH 710</td>
<td>Theory of Functions of a Complex Variable I</td>
</tr>
<tr>
<td>MATH 711</td>
<td>Theory of Functions of a Complex Variable II</td>
</tr>
<tr>
<td>MATH 712</td>
<td>Numerical Linear Algebra</td>
</tr>
<tr>
<td>MATH 713</td>
<td>Internship</td>
</tr>
<tr>
<td>MATH 715</td>
<td>Projective Geometry</td>
</tr>
<tr>
<td>MATH 717</td>
<td>Special Topics in Algebra</td>
</tr>
<tr>
<td>MATH 720</td>
<td>Special Topics in Analysis</td>
</tr>
<tr>
<td>MATH 721</td>
<td>Multivariate Statistical Analysis</td>
</tr>
<tr>
<td>MATH 723</td>
<td>Advanced Topics in Applied Mathematics</td>
</tr>
<tr>
<td>MATH 725</td>
<td>Graduate Design Project</td>
</tr>
<tr>
<td>MATH 730</td>
<td>Thesis Research in Mathematics</td>
</tr>
<tr>
<td>MATH 731</td>
<td>Advanced Numerical Methods</td>
</tr>
<tr>
<td>MATH 751</td>
<td>Solution Methods in Integral Equations</td>
</tr>
<tr>
<td>MATH 752</td>
<td>Calculus of Variations and Control Theory</td>
</tr>
<tr>
<td>MATH 765</td>
<td>Optimization Theory and Applications</td>
</tr>
<tr>
<td>MATH 733</td>
<td>Advanced Probability and Stochastic Processes</td>
</tr>
<tr>
<td>MATH 781</td>
<td>Mathematical and Computational Modeling</td>
</tr>
<tr>
<td>MATH 782</td>
<td>Scientific Visualization</td>
</tr>
<tr>
<td>MATH 791</td>
<td>Interdisciplinary Computational Science Team Project I</td>
</tr>
<tr>
<td>MATH 792</td>
<td>Interdisciplinary Computational Science Team Project II</td>
</tr>
</tbody>
</table>
COURSES WITH DESCRIPTION IN MATHEMATICS

Advanced Undergraduate and Graduate

MATH-600. Introduction to Modern Mathematics for Secondary School Teachers Credit 3 (3-0)
Elementary theory of sets, elementary logic and propositional systems, nature and methods of mathematical proofs, structure of the real number system. Open only to in-service teachers or to others having the permission of the Department of Mathematics.

MATH-601. Technology and Applications in Secondary School Mathematics Credit 3 (3-0)
This course covers techniques of teaching algebra, advanced algebra, trigonometry, and other secondary mathematics using graphing calculators, software packages and other technology. Prerequisite: Consent of the instructor.

MATH-602. Modern Algebra Credit 3 (3-0)
This course covers mappings, binary operations, groups, rings, integral domains, fields, and some applications to coding and cryptography. Prerequisite: MATH 311 or consent of the instructor.

MATH-603. Introduction to Real Analysis Credit 3 (3-0)
The following topics will be covered in this course: elementary set theory, functions, axiomatic development of the real number system, metric spaces, convergent sequences, completeness, compactness, connectedness, continuity, limits, sequences of functions, differentiation, the mean value theorem, Taylor’s theorem, Riemann integration, infinite series, the fixed point theorem, partial differentiation, and the implicit function theorem. Prerequisite: MATH-311 or consent of the instructor.

MATH-604. Modern Geometry for Secondary School Teachers Credit 3 (3-0)
Re-examination of Euclidean geometry, axiomatic systems and the Hilbert axioms, introduction to projective geometry and other non-Euclidean geometries. Prerequisite: MATH-600 or consent of the Department of Mathematics.

MATH-606. Mathematics for Chemists Credit 3 (3-0)
Review of those principles of mathematics involved in chemical computations and derivations from general chemistry through physical chemistry; topics covered include significant figures, methods of expressing large and small numbers, algebraic operations, trigonometric functions and an introduction to calculus.

MATH-607. Theory of Numbers Credit 3 (3-0)
Divisibility properties of the integers, the Euclidean algorithm, congruences, diophantine equations, number-theoretic functions and continued fractions. Prerequisite: Twenty hours of college mathematics.

MATH-608. Methods of Applied Statistics Credit 3 (3-0)
This course introduces the SAS programming language and uses it in the analysis of variance, both single and multi-factor. It includes various methods of hypothesis testing and constructing confidence intervals. The course covers simple and multiple linear regression, including model building and variable selection techniques. Elements of time series and categorical data analysis are covered. Prerequisite: MATH-224.

MATH-610. Complex Variables I Credit 3 (3-0)
The following topics will be covered in this course: complex number system, limits of complex sequences, complex functions, continuity, limits of functions, derivatives, elementary functions, Cauchy-Riemann equations, antiderivatives harmonic functions, inverse functions, power series, analytic functions, analytic continuation, contour integrals, Cauchy’s theorem and Cauchy’s integral formula. Prerequisite: MATH-231.
MATH-611. Complex Variables II Credit 3 (3-0)
MATH-611 is a continuation of MATH-610. The following topics will be covered in this course: Liouville’s theorem, the fundamental theorem of algebra, the winding number, generalized Cauchy theorems, singularities, residue calculus, Laurent series, boundary value problems, harmonic functions, conformal mappings, Poisson’s formula, potential theory, physical applications and the Riemann mapping theorem. Prerequisite: MATH-610.

MATH-612. Advanced Linear Algebra Credit 3 (3-0)
This course covers vector spaces, linear transformations and matrices determinants and systems of linear equations, eigenvalues and eigenvectors, diagonalization, inner products, bilinear quadratic forms, canonical forms, and application to engineering and applied sciences. Prerequisite: MATH-450 or consent of the instructor.

MATH-620. Elements of Set Theory and Topology Credit 3 (3-0)
Operations on sets, indexed families of sets, products of sets, relations, functions, metric spaces, general topological spaces, continuity, compactness and connectedness. Prerequisites: MATH-231 and consent of the instructor.

MATH-623. Probability Theory and Applications Credit 3 (3-0)
This course begins with an introduction to sample spaces and probability, including combinatorics. It covers continuous and discrete random variables, including multivariate, random variables and expectations; also marginal and conditional distributions are derived. The course introduces moment generating functions, and covers the central limit theorem and its applications. Prerequisite: MATH-231.

MATH-624. Theory and Methods of Statistics Credit 3 (3-0)
This course introduces methods of statistical estimation and inference including the following topics: sufficient statistics, confidence sets, hypothesis tests, and maximum likelihood methods. The theory of uniformly most powerful tests and the Neyman-Pearson Lemma are covered. Other topics include least squares estimation, the linear model, and Bayesian methods. Prerequisite: MATH-623.

MATH-625. Mathematics for Elementary Teachers, K-8, I Credit 3 (3-0)
Designed for in-service and prospective teachers who have as their goal “to teach the basic skills and competencies of mathematics sought in today’s world.” The course emphasizes that the teacher, first, must have the knowledge and skills in order to accomplish this goal. It stresses fundamentals of arithmetic, sets and operations, number systems, fractions, decimals, percents, estimation, consumer arithmetic, problem solving and traditional and metric geometry and measurement. This course may not be used for degree credit.

MATH-626. Mathematics for Elementary Teachers, K-8, II (Formerly 3686) Credit 3 (3-0)
A continuation of MATH-625. No credit towards a degree in mathematics; not open to secondary school teachers of mathematics. Credit on elementary education degree. Prerequisite: MATH-625.

MATH-631. Linear and Non-Linear Programming Credit 3 (3-0)
This course covers optimization subject to linear constraints, transportation problems, simplex method, network flows, applications of linear programming to industrial problems and economic theory, and an introduction to non-linear programming. Prerequisites: MATH-450 and consent of the instructor.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit (Lecture-Tutorial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH-632</td>
<td>Games and Queue Theory</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>General introduction to game theory; two-person-non-zero-sum-non-cooperative games; two person cooperative games; reasonable outcomes and values; the minimax theorem. Introduction to queuing theory; single server queuing processes; many serve queueing processes; applications to economics and business. Prerequisites: MATH-224, MATH-450 or consent of the instructor.</td>
<td></td>
</tr>
<tr>
<td>MATH-633</td>
<td>Stochastic Processes</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>This course begins with a review of Probability and Random Variables. Markov Processes, Poisson Processes, Waiting Times, Renewal Phenomena, Branching Processes, Queuing System, Service Times are covered. Prerequisite: MATH-623 or consent of the instructor.</td>
<td></td>
</tr>
<tr>
<td>MATH-650</td>
<td>Ordinary Differential Equations</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>This is an intermediate course in ordinary differential equations with emphasis on applications. Topics include linear systems and various phase plane techniques for non-linear ordinary differential equations. Prerequisite: MATH-431.</td>
<td></td>
</tr>
<tr>
<td>MATH-651</td>
<td>Partial Differential Equations</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>This course includes introduction to complex variables and residue calculus, transform calculus, higher order partial differential equations governing various physical phenomena, nonhomogeneous boundary value problems, orthogonal expressions, Green’s functions and variational principles. Prerequisites: MATH-431, 432.</td>
<td></td>
</tr>
<tr>
<td>MATH-652</td>
<td>Methods of Applied Mathematics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>This course covers matrix theory, systems of linear equations, vector spaces, eigenvalue problem and its applications to systems of linear ODEs and mechanical vibrations, the simplest problems of calculus of variations, Euler equations, boundary conditions, extensions of Euler equations, Hamilton’s Principles, constraints and Lagrange multipliers, introduction to integral equations, and solutions in iterative and other methods. Prerequisites: MATH 431, 432.</td>
<td></td>
</tr>
<tr>
<td>MATH-665</td>
<td>Principles of Optimization</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>Algebra, linear inequalities, duality, graphs, transport networks; linear programming; special algorithms; selected applications. An upper level course. Prerequisites: MATH-231 or equivalent and MATH-450.</td>
<td></td>
</tr>
<tr>
<td>MATH-675</td>
<td>Graph Theory</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>Varieties of graphs, graph theory algorithms, and applications of graph theory to other disciplines. Prerequisite: MATH-450.</td>
<td></td>
</tr>
<tr>
<td>MATH-691</td>
<td>Special Topics in Applied Mathematics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>Topics are selected from differential equations, numerical methods, operations research, applied mechanics and from other fields of applied mathematics. Prerequisites: Senior or graduate standing and consent of the instructor. Graduate Students Only</td>
<td></td>
</tr>
<tr>
<td>MATH-700</td>
<td>Theory of Functions of a Real Variable I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>The focus of this course is a careful study of the fundamental theorems of Lebesgue theory, including Lebesgue measure, differentiation and integration on the real line. Topics from set theory and point set topology are also included in this course. Prerequisite: MATH-507 or equivalent.</td>
<td></td>
</tr>
<tr>
<td>MATH-701</td>
<td>Theory of Functions of a Real Variable II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td></td>
<td>This course is a continuation of MATH-700. The following topics will be covered in this course: general measure and integration, measure and outer measure, and some basic topics from functional analysis. Prerequisite: MATH-700.</td>
<td></td>
</tr>
<tr>
<td>MATH-705</td>
<td>Graduate Seminar</td>
<td>1 (0-2)</td>
</tr>
</tbody>
</table>
| | The seminars will present current developments and ideas in applied mathematics and computational science. Topics explored may consist of material from various mathematics and computational science journals, including discussion.
of research by faculty and students. This course may be repeated for up to 3 credits hours. Prerequisite: Graduate Standing.

MATH-706. Categorical Data Analysis Credit 3 (3-0)
This course will include the following topics: Two-Way Contingency Table Inference for Two-Way Table, Models for Binary Response Variables, Log-linear Models, Testing in Loglinear Models, Multinomial Response Models and Estimation Theory for Parametric Models, and Computer Analysis of Categorical Data. Prerequisite: MATH 624.

MATH-708. Nonparametric Statistics Credit 3 (3-0)
The following topics will be discussed in this course: Order Statistics, Run Test for Trend, Goodness of Fit Tests, Rank Tests for One and Two Populations, Linear Rank Statistics, One-Way and Two-Way Nonparametric Analysis of Variance, and applications to practical problems. Prerequisite: MATH 624.

MATH 709-Discrete Mathematics Credit 3 (3-0)
This course covers topics in discrete mathematics that are taught at the secondary school level. Topics covered include a review of logic, proofs and set theory; functions and relations; recursive and non-recursive sequences; graphs and graph algorithms; directed graphs, trees and traversal algorithms, combinatorics; introduction to probability; and applications in political theory. Methods of teaching these topics will be discussed.

MATH-710. Theory of Functions of a Complex Variable I Credit 3 (3-0)
This course includes basic theory of analytic functions, including Cauchy’s theorem, conformal mappings, Taylor and Laurent series, and residue theory. Prerequisite: MATH-507 or equivalent.

MATH-711. Theory of Functions of a Complex Variable II Credit 3 (3-0)
This course is a continuation of MATH-710. Basic theory and applications of conformal mappings, fractional linear, analytic continuation, and Riemann surfaces will be covered in this course. Prerequisite: MATH-710.

MATH-712. Numerical Linear Algebra Credit 3 (3-0)
Numerical analysis for solution of linear systems, approximation methods foreign values and eigenvectors, least squares solutions, ill-posed and ill-conditioned systems and error analysis are covered. Prerequisite: One programming language, MATH-450 or equivalent.

MATH 713- Internship Credit 6 (0-12)
This course is designed to provide candidates with direct on-the-job experiences relating to teaching and learning mathematics in the secondary school. It emphasizes the development and use of strategies, methods, skills, and assessment as they relate to teaching and learning mathematics. Candidates will learn to apply, plan and manage skills related to instruction. Content includes a variety if teaching strategies, methods, skills, and instructional resources.

MATH-715. Projective Geometry Credit 3 (3-0)
A study of non-Euclidean geometry dealing with ordinary points, ideal points, ordinary lines, ideal lines, ordinary planes and ideal planes. The course deals with perpectivities and projectivities, harmonic sets of points and lines, dualities and related items in a non-metric setting. Prerequisites: Graduate standing and consent of the instructor.

MATH-717. Special Topics in Algebra Credit 3 (3-0)
This course covers selected topics in algebra. Topics covered will be determined by the instructor. Prerequisites: Consent of the instructor and graduate standing.

MATH-720. Special Topics in Analysis Credit 3 (3-0)
This course covers selected topics in analysis. Topics covered will be determined by the instructor. Prerequisites: Consent of the instructor and graduate standing.
MATH-721. Multivariate Statistical Analysis Credit 3 (3-0)
Multivariate Normal Distribution, Inference About a Man Vector, Comparison of Several Multivariate Means, Analysis of Covariance Structure, Analysis of Dispersion, Classification and Clustering Techniques and Some Applications of Multivariate Tests will be discussed in this course. Also, practical examples of industrial use will be addressed. Prerequisites: MATH 608 and MATH 624.

MATH-723. Advanced Topics in Applied Mathematics Credit 3 (3-0)
This course is designed to cover important topics in applied mathematics that may be desired from time to time for specific students in the graduate program. It may also be used as a vehicle for development of new courses for graduate program students. Prerequisite: Consent of the instructor.

MATH-725. Graduate Design Project Credit 3 (3-0)
This course requires independent project work on an advanced mathematical topic of interest to the student and a faculty member acting as the student’s advisor. The topic must be approved by the advisor. Prerequisite: Consent of the instructor.

MATH-730. Thesis Research in Mathematics Credit 3 (3-0)
Students who select the thesis option must do advanced research in an area of interest. The research topic must be approved by the thesis advisor.

MATH-731. Advanced Numerical Methods Credit 3 (3-0)
This course covers numerical methods for solution of parabolic, elliptic and hyperbolic boundary value problems. Problems are selected from engineering applications. Both finite difference and finite element methods are studied. Prerequisite: MATH-460 or equivalent.

MATH-733. Advanced Probability and Stochastic Processes Credit 3 (3-0)
The following topics will be discussed in this course: introduction to Lebesgue integration, probability theory and random variables, laws of large numbers, central limit theorems, random walks, martingales, Markov processes and Markov chains, ergodic theorems and Brownian motion. Prerequisite: MATH 603 or permission of the instructor.

MATH-751. Solution Methods in Integral Equations Credit 3 (3-0)
This course includes an introduction to integral equations, including Volterra equations, Fredholm equations, symmetric kernels, orthogonal systems of functions, and types of singular and non-linear integral equations. Applications to engineering areas are also discussed. Prerequisites: MATH-431, MATH-432 or equivalent.

MATH-752. Calculus of Variation and Control Theory Credit 3 (3-0)
This course covers the following topics: Functionals, Euler’s equation, Lagrange multipliers, Kuhn-Tucker conditions, Pontryagin maximum principle, Weiserstrass-Erdmann corner conditions, Euler-Lagrange equations; first and second variational problems. Applications to engineering areas will also be included. Prerequisites: MATH-431, MATH-432 or equivalent.

MATH-765. Optimization Theory and Applications Credit 3 (3-0)
Gradient methods for unconstrained optimization, constrained nonlinear optimization, optimization of multi-steps, variational principles, and applications relating to business and engineering are discussed. Prerequisites: MATH-450, MATH-431, MATH-432.

MATH-781. Mathematical and Computational Modeling Credit 3(2-2)
This course explores the steps required to model and simulate a system, including discussion of generic governing equations, grid generation, basic numerical schemes, simulation strategies, and data analysis. Both discrete and continuous methods used in scientific applications will be examined. Representative applications include weather prediction, molecular dynamics, scheduling problems, and engine combustion modeling. Prerequisite: MATH 480.

MATH-782. Scientific Visualization Credit 3(2-2)
This course explores concepts and techniques for visualization and its implementation, with emphasis on the use of visualization tools in mathematical simulation modeling. The course will provide practical experience with visualization packages in both X-Windows and mainframe environments. Prerequisite: MATH 781.
MATH-791. Interdisciplinary Computational Science Team Project I Credit 3(1-4)
This course continues development of skills required for independent research of problem-solving in the realm of computational science. The course requires completion of a sound literature review on a topic in computational science, under the guidance of the instructor. Prerequisite: MATH 480.

MATH-792. Interdisciplinary Computational Science Team Project II Credit 3(1-4)
This course continues development of skills required for independent research or problem-solving in the realm of computational science. The course requires completion of an agreed upon computational project, based upon a sound literature review, under the guidance of the instructor. Prerequisite: MATH 791.
Giles Warrack, B.S., M.S., California State Polytechnic University, Ph.D., University of Iowa; Associate Professor

Nail K. Yamaleev, M.S., Ph.D., Moscow Institute of Physics and Technology; Associate Professor
PROGRAM DESCRIPTION
The School of Technology at North Carolina A&T State University offers a Master of Science in Industrial Technology (MSIT) degree. This program is coordinated by the Department of Manufacturing Systems and is designed to increase students’ understanding of industrial management challenges in an array of technical areas and to explore effective methods for dealing with accelerated technological change.

DEGREES OFFERED
Manufacturing Systems – Master of Science in Industrial Technology

ADMISSION REQUIREMENTS
The Master of Science in Industrial Technology, within the School of Technology, requires the GRE General Test as part of the admission process. No minimum score is required at this time. Please contact the Graduate School Office for more information.

PROGRAM OBJECTIVES
The MSIT degree program is built upon the competencies achieved at the baccalaureate level in the industrial technology curriculum and thus enable students to secure applications oriented “technical-management” positions in today’s industrial environment. Specifically, the MSIT program is designed to prepare technical-management professionals and enhance their proficiencies in the following areas:

1. Planning, organization and management of technology, people, and resources;
2. Applying and controlling the use of various high technologies, e.g., computer-aided drafting and design (CADD), computer integrated manufacturing (CIM), machine vision and photonics, telecommunications and wireless communications, computerized construction estimating systems, safety support systems, etc.
3. Control processes to improve quality, reliability and productivity
4. Human resource management and the development of a changing work place to achieve organizational goals; and
5. Problem-solving and creative thinking skills.

TARGET AUDIENCE AND CAREER OPPORTUNITIES
This program is designed to serve the diverse needs of persons who are interested in pursuing careers in technology. Included in this group are the following: (1) persons currently employed in industrial management positions and have professional growth aspirations; (2) individuals recently completing their undergraduate study and want additional preparation prior to embarking on a career in industry; and (3) students interested in entering an advanced graduate degree program (Ph.D., Ed.D., etc.) and whose ultimate goal is university teaching and/or research. Graduates of the program should be able to perform more creatively and competently in leadership roles involving planning, problem solving, and decision-making. Additionally, the program is designed to enhance student competencies in the areas of research and scholarly writing.

INDUSTRIAL TECHNOLOGY
A total of 36 hours is required for the Master of Science in Industrial Technology with a concentration in Manufacturing Systems. The total consists of 12 SH of Core Courses, 6 SH of Management Electives, 9 SH of Technical Electives and 9 SH of Required Courses.
PROGRAM CURRICULA

Core Courses (12 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIT 610 Problem Solving in Industrial Technology</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 700 Concepts of Technological Innovations</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 740 Leadership Development Seminar</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 779 Statistical Research in Industrial Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Management Course- (6 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIT 673 Industrial Productivity Measurement & Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MFG 735 Manufacturing Organization and Management</td>
<td>3</td>
</tr>
<tr>
<td>MFG 745 Managing Project Development</td>
<td>3</td>
</tr>
<tr>
<td>MFG 755 Production Management and Control</td>
<td>3</td>
</tr>
<tr>
<td>MFG 770 Managing a Total Quality System</td>
<td>3</td>
</tr>
<tr>
<td>MFG 772 Strategic Concepts in Quality</td>
<td>3</td>
</tr>
</tbody>
</table>

Technical Electives- (9 credit hours)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFG 651 Principles of Robotics</td>
<td>3</td>
</tr>
<tr>
<td>MFG 674 Advanced Automation and Control</td>
<td>3</td>
</tr>
<tr>
<td>MFG 682 Non-Destructive Evaluation (NDE) Technology II</td>
<td>3</td>
</tr>
<tr>
<td>MFG 690 Special Problems in Manufacturing Systems</td>
<td>3</td>
</tr>
<tr>
<td>MFG 696 Applied Computer Integrated Manufacturing</td>
<td>3</td>
</tr>
<tr>
<td>MFG 699 Independent Study in Manufacturing Technology</td>
<td>3</td>
</tr>
<tr>
<td>MFG 710 Manufacturing Materials</td>
<td>3</td>
</tr>
<tr>
<td>MFG 715 Tool Technology</td>
<td>3</td>
</tr>
<tr>
<td>MFG 760 Advanced Manufacturing Process/CNC</td>
<td>3</td>
</tr>
<tr>
<td>MFG 780 Reliability Testing and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MFG 799 Special Topics in Manufacturing Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Required Courses- (9 credit hours)

Select either Non Thesis or Thesis Option

Non-Thesis Option:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIT 750 Internship I</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 751 Internship II</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 789 Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

or

Thesis Option:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSIT 780 Statistical and Research Methods in Industrial Technology II</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 791 Research for Master’s Thesis I</td>
<td>3</td>
</tr>
<tr>
<td>MSIT 792 Research for Master’s Thesis II</td>
<td>3</td>
</tr>
</tbody>
</table>

- **Required Examination- (0 credit hours)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFG 788 Master’s Comprehensive Examination</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSES DESCRIPTION IN MANUFACTURING SYSTEMS (MFG, MSIT)

Undergraduate/Graduate

MSIT-610. Problem Solving in Industrial Technology

Credit 3 (3-0)

This course teaches the fundamentals of problem solving as they are applied to an industrial technology environment. Included are analytical as well as creative problem solving techniques. Industrial projects within assigned teams are required.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFG-651</td>
<td>Principles of Robotics</td>
<td>3 (1-3)</td>
<td></td>
</tr>
<tr>
<td>MSIT-673</td>
<td>Industrial Productivity Measurement and Analysis</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>MFG-674</td>
<td>Study of Automation and Control Systems</td>
<td>3 (1-3)</td>
<td></td>
</tr>
<tr>
<td>MFG-682</td>
<td>Non-Destructive Evaluation (NDE) Technology II</td>
<td>3 (2-2)</td>
<td></td>
</tr>
<tr>
<td>MFG-690</td>
<td>Special Problems in Manufacturing Technology</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>MFG-696</td>
<td>Applied Computer Integrated Manufacturing (CIM)</td>
<td>3 (2-2)</td>
<td></td>
</tr>
<tr>
<td>MFG-699</td>
<td>Independent Study in Manufacturing Technology</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>MFG-700</td>
<td>Concepts of Technological Innovations</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>MFG-710</td>
<td>Manufacturing Materials</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>MFG-715</td>
<td>Tool Technology</td>
<td>3 (2-1)</td>
<td></td>
</tr>
<tr>
<td>MFG-735</td>
<td>Manufacturing Organization and Management</td>
<td>3 (3-0)</td>
<td></td>
</tr>
<tr>
<td>MSIT-740</td>
<td>Leadership Development Seminar</td>
<td>3 (3-0)</td>
<td></td>
</tr>
</tbody>
</table>

MFG-651. Principles of Robotics
This course emphasizes the study of robotics principles and logic control manipulators towards the total integration into a flexible manufacturing system.

MSIT-673. Industrial Productivity Measurement and Analysis
Study of work measurement and method analysis towards establishing work standards and measuring productivity in industries.

MFG-674. Study of Automation and Control Systems
This course emphasizes the study of automation and control system to include application of PLC, CAD, CAM, CNC, sensors and robotics to simulate a total computer-integrated manufacturing (CIM) environment.

MFG-682. Non-Destructive Evaluation (NDE) Technology II
This course presents the newly developed and/or advanced NDE technologies, such as acoustic emission techniques, magnetic flux leakage techniques, radiographic techniques, thermal infrared testing, microwave techniques, ultrasonic holography, and vibro-thermographic techniques. For each of these technologies, a series of topics will be discussed: physical principles, testing procedures, application areas, equipment, instruments, data acquisition, data analysis, flaw indication, advantages and limitations.

MFG-690. Special Problems in Manufacturing Technology
This course is to provide a forum for dialogue about areas of interest to students pertaining to issues and or skill development. This will be accomplished through the definition, exploration, and tentative resolution of selected current and evolving industrial technology. This experience is targeted toward providing students the opportunity to think about a particular concern and/or interest then to develop a final product in the form of paper and presentation.

MFG-696. Applied Computer Integrated Manufacturing (CIM)
This course is designed to provide a working knowledge of computer integrated manufacturing (CIM). It will provide hands-on experience using sensoring devices necessary to control a CIM system. Prerequisite: MFG-674.

MFG-699. Independent Study in Manufacturing Technology
The student selects a problem, either management or technical in nature, in consultation with a faculty member in this area of interest. This problem may be research or application oriented in nature. A standard report format will be required. Prerequisite: Consent of the instructor.

MFG-700. Concepts of Technological Innovations
This course will provide instruction in the concepts of technological innovations. Contemporary issues are also explored.

MFG-710. Manufacturing Materials
This course surveys the materials commonly used to manufacture products. It explores the way these materials are formed. Covered are traditional metals and plastics as well as emerging high tech materials. The practical applications of these materials are emphasized. Prerequisite: MFG-471 or equivalent or consent of instructor.

MFG-715. Tool Technology
Includes coverage of tool layout, tool material, tool wear and failure, work holding principles, jig and die, specifications for press working, blanking, bending, forming, drawing, and forging, etc. Tooling for joining processes such as welding, soldering, brazing, mechanical joining, and adhesive bonding are covered, as well as the use of computers in tooling. Prerequisite: MFG-472 or equivalent or consent of instructor.

MFG-735. Manufacturing Organization and Management
This course surveys contemporary manufacturing organization and management issues, focusing on manufacturing aspects of the product cycle, research and development, product design, marketing, sales and distribution. This course explores new trends in technology management and quality of work life issues.

MSIT-740. Leadership Development Seminar
This is an experiential seminar designed for assessment of the individual’s managerial strengths and weaknesses in a manufacturing management position. Current and evolving leadership issues will be discussed and leadership models will be presented. Managerial and leadership issues in high participation work places will be stressed. Students will participate in behavioral simulations and receive psychometric feedback.
MFG-745. Managing New Product Development Credit 3 (3-0)
This course covers the product development cycle and emphasizes the benefits of Early Manufacturing Involvement (EMI) and Logistics Processes. Use of cross-functional teams in product development is also explored.

MSIT-750. Internship I Credit 3 (0-6)
This course is designed to provide students with an internship experience in an industrial environment related to their technical discipline. Students must be employed full-time for one semester. Evaluation will be based on reports from the student’s industrial supervisor and the university coordinator. Prerequisite: 15 hours graduate credit.

MSIT-751. Internship II Credit 3 (0-6)
This course is designed to provide students with an additional semester of internship experience related to their technical discipline.

MFG-755. Production Management and Control Credit 3 (3-0)
This course focuses on production scheduling, work flow, and inventory flow. Just-in-time (JIT), and Material Resources Planning (MRP) are explored as techniques for structuring production as well as inventory management. Traditional work design is compared to newer, more high participative work designs including self-managed teams.

MFG-760. Advanced Manufacturing Process/Computer Numerical Control (CNC) Credit 3 (1-2)
This course explores applications in advanced Computer Numerically Controlled (CNC) machine tool technology with precision work performed on lathes, mill, Electrostatic Discharge Machining (EDM), and surface drilling workstations. Prerequisite: MFG-472 or consent of instructor

MFG-770. Managing a Total Quality System Credit 3 (3-0)
The study of total quality control systems assists to reduce defects, lower costs, and increase productivity in a manufacturing environment. Study includes implementing quality through Statistical Process Control (SPC), managing quality, quality information systems, quality circles, and quality work-life concepts. Prerequisite: MFG-495 or equivalent or consent of instructor

MFG 772. Strategic Concepts in Quality Credit 3 (3-0)
This course has four parts. Part I, Introduction to Total Quality, presents the core principles of TQ and begins to explain how they relate to management concepts. This section also explains many of the most common quality techniques students are likely to encounter. Part II, Total Quality and Organization Theory, introduces the idea of customer-supplier relations and shows how TQ relates to topics including organization-environment relations, organizational design, and change. Part III, Total Quality and Organizational Behavior will discuss the themes of teamwork and empowerment and relates TQ on both the content and process of competitive strategy. The bibliography at the end of the textbook provides a number of references for the selection of the Quality Paper and Quality Presentation requirement of this course.

MSIT 779. Statistical Research in Industrial Technology Credit 3 (3-0)
This course introduces the concepts and methods of statistics, which include descriptive statistics, probability theory, sampling distribution, interval estimation, hypothesis testing, statistical inferences, linear and multiple regressions, auto- and cross-correlation, and non-parametric statistical methods. The course also emphasizes the applications of the statistics to the research and development in industrial technologies, which include research design, data collection and analysis, proposal development and reports

MFG-780. Reliability Testing and Analysis Credit 3 (3-0)
Study of Metrology and reliability testing at various stages of manufacturing processes for zero failures. Includes destructive and non-destructive testing procedures, failure analysis, exponential and Weibull Failure Law, and reliability prediction of components and/or systems.

MFG 788. Master’s Comprehensive Exam Credit 0(0-1)
This course will aid in the preparation of the graduate student to take the Master of Science in Industrial Technology (MSIT) comprehensive examination. The examination will be administered towards the end of the semester or summer session. This course will be graded on a Pass/Fail basis. The passing of this course is a requirement for graduation from the MSIT program. Prerequisites: 24 credit hours of graduate level courses. (F;S;SS)
MSIT-789. Master’s Degree Project Credit 3 (3-0)
The master’s degree project is designed to be a culminating experience for the master’s degree. It is applications oriented and focuses on an actual project related to the student’s technical discipline. The course is intended to integrate the learning from the classes taken in the degree program. Prerequisite: 24 hours graduate credit.

MSIT-790. Research Methods Credit 3 (3-0)
This course explores empirical methodologies that are applicable to technical research investigation. Prerequisites: Graduate standing and consent of thesis advisor.

MSIT-791. Thesis I Credit 3 (3-0)
The student will select a research topic that is of special interest and approved by his/her graduate thesis advisor. Prerequisite: MSIT 790 or consent of advisor.

MSIT-792. Thesis II Credit 3 (3-0)
The student may enroll in this course to complete approved research for the thesis. Prerequisites: MSIT 790, MSIT 791 or consent of advisor.

MFG-799. Special Topics in Manufacturing Technology Credit 3 (3-0)
This course will allow a group of students to work on special topics of interest which are not covered by an existing course. These are emerging themes that reflect the rapidly changing nature of “World Class Manufacturing” environments. Prerequisite: Consent of the instructor.

Graduate Faculty

Department: Manufacturing Systems
Interim Chair: Dr. Ji Y. Shen
Alton L. Kornegay, Assistant Professor, B.S., Savannah State University, MBA, University of Iowa Ph.D., Iowa State University
Ali R. Osareh, Assistant Professor, B.S., University of Colorado-Denver, M.S., University of Missouri-Columbia Ph.D., Virginia Polytechnic Institute and State University
Sheila E. Rowe, Assistant Professor, B.S., Roosevelt University, M.S., Ph.D., Iowa State University
Ji Y. Shen, Associate Professor, B.S., Northwestern Polytechnic University, M.S., Nanjing Aeronautical University Ph.D., Old Dominion University
Earnest L. Walker, Professor and Associate Dean, B.S., A.M. & N. College, M.S., University of Arkansas, Fayetteville, Ph.D., Southern Illinois University at Carbondale
OBJECTIVES

The Department of Natural Resources and Environmental Design offers a program leading to the Master of Science Degree in Plant, Soil and Environmental Science. Students may select any concentration in Applied Environmental Biology, Land Use and Management, Soil and Sustainable Fertility, Applied Environmental Chemistry, Soil Mineralogy, Soil and Water Conservation, Environmental Horticulture, Plant Biotechnology, Constructed Wetlands, and Mushroom Biology. The objective of the program is to prepare students with the expertise needed to assume technical, teaching, research, and extension positions in universities, industries, and state/federal governments.

Master of Science - DEGREE OFFERED

Master of Science – Plant, Soil and Environmental Science

GENERAL PROGRAM REQUIREMENTS

The admission of students to the graduate degree program in the Department of Natural Resources and Environmental Design is concurrent with the general admission requirements of the University. For other requirements refer to the graduate catalog.

DEPARTMENTAL REQUIREMENTS

Candidate should have a Baccalaureate degree from an accredited undergraduate institution. A bachelor’s degree in Agriculture is not required if the student has had adequate training in the basic sciences. The candidate should have a grade point average of 3.0 either in science and mathematics courses, or an overall undergraduate GPA of at least 2.6 (on a 4.0 scale). Additionally, the candidates should have the following required courses and credits or their equivalent.

- Chemistry 12 credit hours
- Biology 12 credit hours
- Mathematics and Calculus 6 credit hours
- Physics 3 credit hours
- Soil and Plant Science 3 credit hours

Students who have not completed the required or equivalent courses at the undergraduate level, but have satisfied all other requirements for admission will be granted provisional or conditional admission and allowed to make up the deficiencies in the first two semesters. The students lacking adequate background in soil science, plant science or environmental science should take 6 credits in the deficient concentration.

Thesis Option
This option consists of a minimum of 30 semester hours at the 600 and 700 levels and completion of a thesis. A student receives 6 semester hours credit for thesis.

Non-thesis Option
This option consists of a minimum of 33 semester hours at 600 and 700 levels, and completion of a project report. The student pursuing the Master of Science degree in Plant, Soil and Environmental Science is required to complete a common core of courses consisting of 10 hours of the following courses: A student must take courses marked with asterisk (*).

*HORT 700 Plant Biotechniques (Plant Science Option) 3 (1-4)
*SLSC 632 Soil Physics (Soil Science Option) 3 Semester Hours
*AGRI 604 Experiment Methods in Research 3 Semester Hours

301
Students pursuing the M.S. in Plant, Soil and Environmental Science are required to spend a minimum of two years to complete course work and a problem in applied research. In addition, a minimum of 16 semester hours is required by area of concentration.

Courses offered in Plant, Soil and Environmental Science - M.S. Program

<table>
<thead>
<tr>
<th>Courses</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEN 600 Soil and Water Engineering I</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>AGEN 624 Water Resources Engineering</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>AGEN 701 Soil and Water Design</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>AGEN 714 Applied Hydrogeology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>AGRI 604 Experiment Methods in Research</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>AGRI 799 Thesis Research in Agriculture and Environmental Science</td>
<td>6 (6-0)</td>
</tr>
<tr>
<td>AGRI 999 Continuation of Thesis</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td>EASC 610 Sustainable Earth</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>EASC 620 Environmental Studies I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>EASC 621 Environmental Studies II</td>
<td>4 (4-0)</td>
</tr>
<tr>
<td>EASC 622 Environmental Sanitation and Waste Management</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>EASC 624 Earth Science, Geomorphology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>EASC 625 Earth Resources</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>EASC 644 Problem Solving in Earth Science</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>EASC 666 Earth System Science</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>EASC 699 Environmental Problems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>EASC 708 Conservation of Natural Resources</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>EASC 718 Applied Environmental Microbiology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>HORT 600 Plant Tissue Culture</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>HORT 611 Commercial Greenhouse Production</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>HORT 620 Vegetable Production</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>HORT 700 Plant Biotechniques</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>NARS 608 Special Problems in Natural Resources</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>NARS 610 Applied Spatial Statistics and GIS</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>NARS 618 General Forestry and Ecology</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>NARS 720 Graduate Seminar in Natural Resources</td>
<td>1 (1-0)</td>
</tr>
<tr>
<td>NARS 777 Special Problems in Plant Sciences Graduate Studies</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>SLSC 621 Soil Microbiology</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>SLSC 632 Soil Physics</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>SLSC 633 Soil Genesis, Classification and Land Use</td>
<td>4 (2-4)</td>
</tr>
<tr>
<td>SLSC 634 Soil Environmental Chemistry</td>
<td>4 (3-2)</td>
</tr>
<tr>
<td>SLSC 640 Wetland Management</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>SLSC 710 Soils of North Carolina</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>SLSC 715 Soil Mineralogy</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>SLSC 717 Methodology in Soil, Plant and Water Analysis</td>
<td>3 (0-6)</td>
</tr>
<tr>
<td>SLSC 727 Soil Fertility and Plant Nutrition</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>SLSC 734 Applied Environmental Chemistry</td>
<td>4 (4-0)</td>
</tr>
</tbody>
</table>

COURSES WITH DESCRIPTION IN NATURAL RESOURCES AND ENVIRONMENTAL DESIGN

Plant, Soil and Environmental Science

Advanced Undergraduate and Graduate

AGEN-600. Soil and Water Engineering I

This course will illustrate measures to improve soil and water use by evaluating and using present conservation practices and models. Water conveying and retaining structures, and soil conservation, drainage and irrigation systems will be discussed and designed. The course will
emphasize sound environmental design practices. Prerequisite: AGEN 360 or Consent of instructor. (F)

AGEN-624. Water Resources Engineering
Credit 3 (2-2)
Analysis and design of water resources systems. Topics include: water resources planning, and development, hydraulic structures, introduction to aquifer analysis and contamination, well development, pump evaluation and selection, water quality and management, water laws, detention and retention ponds, wastewater management and remediation.

AGRI-604. Experiment Methods in Research
Credit 3 (3-0)
Experimental design, methods and techniques of experimentation, application of experimental design to plant, animal and food research; and interpretation of experimental data will be included in the course. Prerequisite (Math 224)

EASC-610. Sustainable Earth
Credit 3(3-0)
The topics addressed in this course include global climate change, ocean habitat and productivity, sustainable food production, and safe and pure drinking water. Students will focus on environmental issues, and they will examine present options with a perspective of how we may influence or be influenced by these issues in the future.

EASC-620. Environmental Studies I
Credit 3(3-0)
This course provides a multidisciplinary approach to several global, regional, and local environmental issues. These issues will be examined from a variety of perspectives; scientific, technical, social, political, economic, legal and ethical. A combination of in-class and out-of-class activities will provide the basis for research projects.

EASC-621. Environmental Studies II
Credit 4(0)
Students will be involved in role-playing exercises in which small groups of students will represent government or interest groups in a town meeting that will discuss a controversial environmental issues. Students will also participate in field trips that will provide an understanding of the complexities of environmental issues and will present a formal report.

EASC-622. Environmental Sanitation and Waste Management
Credit 3 (2-2)
This course is the study of traditional and innovative patterns as well as problems of managing with handling waste products of urban and rural environments, their renovation and reclamation. (F)

EASC-624. Earth Science, Geomorphology
Credit 3 (2-2)
This course examines various land forms and their evolution – the naturally evolved surface features of the Earth’s crust and the processes responsible for their evolution, their relation to man’s activities and as the foundation for understanding the environment. (F)

EASC-625. Earth Resource
Credit 3 (2-2)
Conservation, management and use of renewable and nonrenewable resources and their impact on the social and economic quality of our environment. (F)

EASC-644. Problem Solving in Earth Science
Credit 3 (3-0)
Independent field and/or laboratory research in earth and environment science for advanced students is/or required. (S)

EASC-666. Earth System Science
Credit 3 (3-0)
This course is the study of the earth as a “system” with emphasis on the atmosphere, biosphere, hydrosphere, and lithosphere interactions as related to global change and human activities. (F)

EASC-699. Environmental Problems
Credit 3 (3-0)
This course provides multidisciplinary examination of environmental problems and application of appropriate techniques of analysis to selected problems. Team taught by environmental faculty. (S)
HORT 600. Plant Tissue Culture Credit 3 (2-2)
Theory and principles of plant cell, tissue and organ culture, and their application in crop improvement will be
studied. Prerequisites: NARS 110 and HORT 334. (S)

HORT 611. Commercial Greenhouse Production Credits 3 (2-2)
The culture of floriculture crops in the greenhouse with emphasis on seasonal production, marketing, insect and
disease controls and plant growing structures will be studied. Prerequisites: HORT 334 and 610. (S)

HORT 620. Vegetable Production Credit 3 (2-2)
This course provides a comprehensive study of major and minor vegetable crops of North Carolina, the United States,
and the world in relation to the industry, production practices, crop development, nutritional value, quality
characteristics, marketing, and post-harvest handling and storage.
Prerequisites: NARS 110 and SLSC 338. (F)

NARS 608. Special Problems in Natural Resources Credit 3 (3-0)
This course is designed for students who desire to study special problems in Natural Resources; plant, soil, and environment. (F, S)

NARS 610. Applied Spatial Statistics and GIS Credit 3 (3-0)
This course introduces spatial statistical analysis techniques, which provide the students with the
opportunity to conduct exploratory spatial data analysis with ArcView GIS, S-PLUS/ SpatialStats
and the SAS/GIS Software. The focus of this course is on effective application of spatial data
analysis in GIS environment; MATH 224 and GIS software or consent of instructor. (DEMAND)

NARS-618. General Forestry and Ecology Credit 3 (2-2)
History, classification, culture, and utilization of native trees, with special emphasis on their
importance as a conservation resource and the making of national forestry policy, and the ecological
impact of trees on environmental quality. Prerequisite: Botany-140.

SLSC-621. Soil Microbiology Credit 4 (2-4)
A study of soil micro and macro organisms and their role in elemental cycles, environmental
pollution remediation and crop yields. Also, deals with the rhizosphere ecology and processes.
Organic matter accumulation and carbon.

SLSC-632. Soil Physics Credit 3 (2-2)
This course is a study of fundamental physical principles and laws that govern the behavior of
soils. Physical constitution of soil water, soil air and the relationship of soil physical conditions
to plant growth and engineering usage will also be studied. Prerequisites: SLSC 338, CHEM
102, and MATH 113, and consent of instructor. (S)

SLSC-633. Soil Genesis, Classification and Land Use Credit 4 (2-4)
Factors and processes of soil formation, grouping of soils based on their properties, soil mapping,
soil interpretations for various uses and discussion of new concepts in soil taxonomy.
Prerequisite: SLSC 338.

SLSC-634. Soil Environmental Chemistry Credit 4 (3-2)
This course is a study of the chemical properties of soil environment including interactions of
solid, liquid and gaseous phases. Discussion will also include ion and pollutant interactions
with soil, their retention, potential movement and environmental impact. Additional discussion
will include oxidation and reduction, soil acidity and alkalinity and their impact on waste management,
resource utilization and the environment. (S)

SLSC-640. Wetland Management Credit 3 (3-0)
Designed to provide a basic understanding of benefits that wetlands in their natural conditions
offer mankind, fish and wildlife habitat, water quality improvement, flood protection, filter traps
for pollutants, erosion control, natural products, recreation, and aesthetics. Primary instructional
areas include wetland ecology, wetland systems of the southeast region, wetland law and regulations,
soil conditions of wetlands, hydrology of wetlands, methodology of delineating wetlands,
wetland irrigation, plant and vegetation identification, and writing environmental reports.
GRADUATE STUDENTS ONLY

HORT-700. Plant Biotechniques
Fundamentals of biotechniques in plant cell and tissue culture. These techniques are organogenesis, somatic embryogenesis, isolation of plant cellular and plasmid DNA, RNA transformation, and ELISA.

AGEN-701. Soil and Water Engineering II
The design of drainage and irrigation systems and their applicability to specific regions will be addressed. There will be in-depth discussion of saturated and unsaturated flow, and various equations used to solve soil water movement. Open channel flow, well hydraulics, and earth dams or embankments will be covered. Prerequisite: AGEN-600 or consent of the instructor.

EASC-708. Conservation of Natural Resources
A descriptive course dealing with conservation and development of renewable natural resources encompassing soil, water, and air; cropland, grassland, and forests; livestock, fish, and wildlife; and recreational, aesthetic, and scenic values. Attention will be given to protection and development of the nation’s renewable natural resources as an essential part of the national security, defense, and welfare.

SLSC-710. Soils of North Carolina
A study of the factors basic to the understanding of the soils of North Carolina, their classification, and properties as related to sound land use and management. Prerequisite: Fundamentals of Soil Science 338.

AGEN-714. Applied Hydrogeology
This course covers principles of groundwater resource evaluation and the approach or techniques used to solve groundwater problems. Discussion includes methods used to quantitatively appraise hydrogeologic parameters affecting water-yielding capacity of wells and aquifers. Various types of aquifers will be discussed under the umbrella of confined and unconfined aquifers. Ground water quality, conservation and contamination will also be covered.

SLSC-715. Soil Mineralogy
A study of soil minerals with regard to their composition, structure, classification, identification, origin, and significance. Special emphasis on primary weatherable silicates, layer silicates, and oxide minerals. Prerequisites: SLSC-634 and consent of the instructor.

SLSC-717. Methodology in Soil, Plant and Water Analysis
A study of principles involved in the analysis of soils, plants, and water. Emphasis on basic instrumental and chemical methods for interpretation of soil fertility and environment. Instruction in the use of special instruments.

EASC-718. Applied Environmental Microbiology
Discussion of interactions between microorganisms and their physical environment, and significance of microorganisms in eutrophication, mining spoils, and waste treatments. Prerequisites: General Microbiology-221 and consent of the instructor.

NARS-700. Introduction to Graduate Studies in Natural Resources
This course will prepare students for the entire Master’s program. Students will establish goals and objectives for their Master’s program. Faculty will present lectures on their research areas to acquaint students with research opportunities in the department.

NARS-720. Graduate Seminar in Natural Resources

NARS-777. Special Problems in Plant Science

SLSC-727. Soil Fertility and Plant Nutrition
Fundamental and theoretical aspects of soil fertility, productivity, and plant nutrients. A discussion
of important research data on soil fertility and plant nutrition. Prerequisites: SLSC-517 and consent of the instructor.

SLSC-734. Applied Environmental Chemistry
Credit 4 (3-2)
This course is an in-depth discussion of soil chemical interaction in terms of ion exchange, solution equilibrium, solubility patterns and also electrochemistry; comprehensive coverage of the chemistry of contaminant interactions with soil, its retention, movement and the environmental impact; review of relevant advances in soil chemistry in the past and recent times. Prerequisite: SLSC-634 or equivalent.

AGRI-799. Thesis Research in Agriculture and Environmental Science
Credit 1-6 1 (1-0) to 6 (6-0)

AGRI-999. Continuation of Thesis
Credit 1 (1-0)

Department: Natural Resources and Environmental Design
Chair: Dr. G. B. Reddy

M.R. Reddy, B.S., Osmania University; M.S., A.P.A.U. (India); Ph.D., University of Georgia; Professor, Graduate Program Coordinator
G.A. Gayle, B.S., North Carolina A&T State University; M.S., Ph.D., N.C. State University; Professor
M. Kamp-Glass, B.S., Texas Tech University; M.S., Ph.D., Texas A&M University; Professor
O. Isikhuemhen, B.S., M.S., University of Benin, Nigeria; Ph.D. Institute of Microbiology, Prague, Czech Republic, Adjunct Assistant Professor
C. Neidziela, B.S., Pennsylvania State University; M.S., West Virginia University; Ph.D., North Carolina State University, Adjunct Assistant Professor
C.W. Raczkowski, B.S., M.S., Kansas State University; Ph.D., N.C. State University; Adjunct Associate Professor
G.B. Reddy, B.S., M.S., A.P.A.U. (India); Ph.D., University of Georgia; Professor and Chair
Manuel R. Reyes, B.S., University of the Philippines at Los Banos; M. Phil., Cranfield Institute of Technology, England; Ph.D., Louisiana State University; Associate Professor
A. Shahbazi, B.S., University of Tabriz; M.S., University of California, Davis; Ph.D., Pennsylvania State University; Associate Professor
G.A. Uzochukwu, B.S., M.S., Oklahoma State University; Ph.D., University of Nebraska; Professor
G. Yang, B.S., Jilin Agricultural University; M.S., Ph.D., University of Nebraska-Lincoln; Adjunct Associate Professor
OBJECTIVES

The Department of Physics provides quality instruction, mentoring, and training in order to produce competitive graduates who are trained in the arts of critical thinking, analytical reasoning, and problem solving. The Masters of Science program in Physics prepares students for professional careers in industrial and governmental research, developmental applications of physics, teaching, and further study toward a Ph.D. in physics.

The Department of Physics has 8 full-time faculty and several research associates that participate in six funded research areas. These include experimental low- and medium-energy physics, experimental and theoretical chemical physics, physics education, the physics of materials, and geosciences. To support these efforts, the department receives over $2.7 Millions per year in research funds. Each year, faculty and students publish an average of 20 refereed articles and make over 25 presentations at national and international conferences.

The department has strong and active collaborations with major research institutions such as Duke University, the University of North Carolina at Chapel Hill, North Carolina State University, Wake Forest University, Stanford University, the University of Pennsylvania, Hampton University, the University of Virginia and others. Collaborations with national laboratories include the Thomas Jefferson National Accelerator Facility (JLab), NOAA-Earth System Research Laboratory (NOAA-ESRL), Lawrence Berkeley National Laboratory (LBNL), National High Magnetic Field Lab-Florida, Los Alamos National Laboratory (LANL), and Oak Ridge National Laboratory (ORNL). International collaborations include the University of Marseilles in France, the Addis Ababa University in Ethiopia, ITEF Moscow, Russia, and the Institute for High Energy Physics at Protvino, Russia.

RESEARCH PROGRAMS AND FACILITIES

There are six research groups in the department.

a. **Experimental Low and Medium Energy Physics:** Research carried out on campus and at the Thomas Jefferson National Accelerator Facility and Triangle Universities Nuclear Laboratory. The program is supported by several grants from the National Science Foundation. Research topics include the investigation of the spin structure of the nucleon and tests of fundamental symmetry-breaking predictions in the theory of the strong force through precision measurement of meson decay widths.

b. **Chemical Physics: Experimental and Theoretical:** This research program involves spectroscopic techniques applied to the study of chemical reactions, non reactive energy transfer processes, and cluster photochemistry, as well as theoretical calculations involving density matrix functional theories. The program is supported by grants from the National Science Foundation.

c. **Atmospheric Science:** The research and technology integrated themes include: sensor science and technology, data mining and analysis, and global observing systems. This research program is supported by a grant from the National Oceanic and Atmospheric Administration (NOAA).

d. **Physics of Materials:** Experimental and theoretical research into the physical properties of amorphous, ordered, and nanostructured solids. Investigated materials include metals, insulators, semiconductors and amorphous solids.

e. **Physics Education:** Space and Earth Science Education development supported through a NASA grant. Also, research on web-based education and innovative teaching methods and on creating a responsive learning environment.

f. **Seismic Data Processing Facility:** Research in seismic physical modeling, seismic data analysis, subsurface imaging, and non-destructive testing using ultrasonic waves. The research is supported by a grant from the National Science Foundation.
The School of Graduate Studies through the Department of Physics offers two program tracks leading to the Master of Science in Physics: Professional Physics and Applied Physics, as well as Computational Sciences with a Physics concentration.

The Professional Physics track provides the comprehensive preparation needed for the pursuit of a Ph.D. in physics or related areas. The Applied Physics track provides opportunity for interdisciplinary studies and research with other science, engineering, and mathematics programs to broaden the experience for employment in business, industry, or government. The M.S. in computational sciences is an interdisciplinary program, where students can work on a computational problem in physics after fulfilling the common requirements for the program.

DEGREES OFFERED

M.S. in Physics with concentrations in
- Professional Physics
- Applied Physics
- Computational Sciences (Physics)

GENERAL PROGRAM REQUIREMENTS

Admission to the M.S. in Physics degree program in the Department of Physics is based upon the general admission requirements of the University. In addition, regular admission to the M.S. in Physics degree program requires an undergraduate degree in physics or its equivalent. Regular admission also requires that an applicant’s background reflect maturity in physics from junior and senior level undergraduate courses in classical mechanics, electromagnetism, thermodynamics and statistical mechanics, and quantum physics. Applicants may be admitted to graduate studies unconditionally, provisionally, or as special students. Provisional admission may be granted to those whose training is in other disciplines related to physics.

DEPARTMENT REQUIREMENTS

The M.S. in Physics degree program offers three options: the thesis option, the course work option, and the project option. The thesis option requires a minimum of 30 semester hours, which includes 6 semester hours of thesis. The course work option requires a minimum of 33 semester hours plus a comprehensive examination. The project option requires a minimum of 30 semester hours plus 3 semester hours of special project. At least fifty percent of the courses counted towards the M.S. in Physics degree must be numbered 700 and above. In addition, the Professional Physics track requires a minimum of 24 semester hours of physics courses and the Applied Physics track requires a minimum of 18 semester hours of physics courses. The minimum physics course requirements include a core of competency courses in the following subjects: Classical Mechanics, Electromagnetism, Quantum Mechanics, and Statistical Mechanics.

To meet graduation requirements, students must maintain and complete the M.S. in Physics program with an overall GPA of 3.0 or better on a scale of 4.0. Up to six semester hours of graduate work may be transferred from another university, provided it was not a part of any prior undergraduate degree requirement. The course content must adequately replace current graduate offerings in the student’s curriculum. Transfer credits should be at a level comparable to 600 or 700 level courses at North Carolina A&T.

CURRICULUM GUIDE FOR M.S. IN PHYSICS

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Credit</th>
<th>First Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 600 Classical Mechanics</td>
<td>3</td>
<td>PHYS 630 Statistical Mechanics</td>
</tr>
<tr>
<td>PHYS 615 Fund. Of Electromagnetism</td>
<td>3</td>
<td>Elective</td>
</tr>
<tr>
<td>PHYS 620 Quantum Mechanics</td>
<td>3</td>
<td>Elective</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 630 Statistical Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
<tr>
<td>Elective</td>
<td>3</td>
</tr>
</tbody>
</table>
First Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHYS 791</td>
<td>M.S. Project</td>
<td>3</td>
</tr>
<tr>
<td>Or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 792</td>
<td>M.S. Thesis</td>
<td>1-6</td>
</tr>
<tr>
<td>Or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two PHYS Electives</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PHYS 791</td>
<td>M.S. Project</td>
<td>3</td>
</tr>
<tr>
<td>Or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 792</td>
<td>M.S. Thesis</td>
<td>1-6</td>
</tr>
<tr>
<td>Or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS Elective</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Physics Core Required Courses Include:
- PHYS 600 Classical Mechanics
- PHYS 615 Fundamentals of Electromagnetism
- PHYS 620 Quantum Mechanics I
- PHYS 630 Statistical Mechanics

Electives:
To be determined by the student’s interest and approved by the student’s advisor and/or the Graduate Coordinator. The list of electives includes (but is not limited to): PHYS 651, PHYS 680, PHYS 695, PHYS 715, PHYS 720, PHYS 735, PHYS 736, PHYS 737, and PHYS 738.

List of Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 600*</td>
<td>Classical Mechanics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 601</td>
<td>Selected Topics in Geophysics</td>
<td>3 (2-2)</td>
</tr>
<tr>
<td>PHYS 602</td>
<td>Introduction to Geophysical Research</td>
<td>3 (1-4)</td>
</tr>
<tr>
<td>PHYS 605</td>
<td>Mathematical Methods</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 615*</td>
<td>Fundamentals of Electromagnetism</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 620*</td>
<td>Quantum Mechanics I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 630*</td>
<td>Statistical Mechanics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 651</td>
<td>Advanced Astrophysics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 680</td>
<td>Advanced Solar Physics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 695</td>
<td>Space and Atmospheric Science</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 715</td>
<td>Advanced Electromagnetism</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 720</td>
<td>Quantum Mechanics II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 730</td>
<td>Optical Properties of Matter</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 735</td>
<td>Physics of Atoms, Molecules and Nanosystems</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 736</td>
<td>Spectroscopic Techniques</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 737</td>
<td>Physics of Solids</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 738</td>
<td>Nuclear Physics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 739</td>
<td>High Energy Physics</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 740</td>
<td>Graduate Seminar</td>
<td>Var. 1-3</td>
</tr>
<tr>
<td>PHYS 743</td>
<td>Experimental Methods in Physics</td>
<td>3 (2-3)</td>
</tr>
<tr>
<td>PHYS 744</td>
<td>Introduction to Computational Methods in the Physical & Biological Sciences</td>
<td>3(3-0)</td>
</tr>
<tr>
<td>PHYS 745</td>
<td>Computational Physics</td>
<td>3 (2-3)</td>
</tr>
<tr>
<td>PHYS 750</td>
<td>Relativistic Quantum Mechanics I</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 751</td>
<td>Relativistic Quantum Mechanics II</td>
<td>3 (3-0)</td>
</tr>
<tr>
<td>PHYS 760</td>
<td>Special Topics</td>
<td>Var. 1-3</td>
</tr>
<tr>
<td>PHYS 770</td>
<td>Research</td>
<td>Var. 1-9</td>
</tr>
<tr>
<td>PHYS 791</td>
<td>Masters Project</td>
<td>Var. 1-6</td>
</tr>
<tr>
<td>PHYS 792</td>
<td>Masters Thesis</td>
<td>Var. 1-6</td>
</tr>
</tbody>
</table>

*Required Core Courses

Courses for Professional Teachers

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 705</td>
<td>Physics for Science Teachers I</td>
<td>Var. 1-6</td>
</tr>
<tr>
<td>PHYS 706</td>
<td>Physics for Science Teachers II</td>
<td>Var. 1-6</td>
</tr>
<tr>
<td>PHYS 707</td>
<td>Physics for Science Teachers III</td>
<td>Var. 1-6</td>
</tr>
</tbody>
</table>
COURSES IN PHYSICS WITH DESCRIPTIONS

Advanced Undergraduate and Graduate

PHYS 600. Classical Mechanics Credit 3 (3-0)
A theoretical treatment of particle and rigid body dynamics. Topics include variational principles, Lagrangian and Hamiltonian mechanics, the physics of rotation, oscillations, canonical transformations and Hamilton’s equations, and Hamilton-Jacobi theory. Prerequisite: PHYS 401 or Graduate standing.

PHYS 601 Special Topics in Geophysics Credit 3 (2-2)
This is an advanced undergraduate and graduate course on selected topics in applied and computational geophysics. A descriptive title and syllabus must have received departmental approval before scheduling. Students' records will carry both course number and descriptive title. The course may be repeated to earn a maximum of six credit hours. Prerequisite: PHYS 242 or permission of instructor.

PHYS 602 Introduction to Geophysical Research Credit 3 (1-4)
This course involves student participation in research training in geophysical sciences conducted by faculty. It offers structured education and research training activities that guide experiences in geophysical topics, techniques and research projects involving geophysical surveys, physical modeling and numerical simulation. The course may be repeated to earn a maximum of six credit hours. The course is conducted in a lecture-laboratory format with one hour of lecture and four hours of laboratory per week. Prerequisite: PHYS 601 or permission of instructor.

PHYS 605. Mathematical Methods Credit 3 (3-0)
Covers topics in mathematical physics: vector calculus, complex variables, Fourier theory, special functions and boundary value problems, variational methods, and Green functions. Prerequisite: Graduate standing or consent of instructor.

PHYS 615. Fundamentals of Electromagnetism Credit 3 (3-0)
This course covers the essentials of classic electromagnetism: electrostatics, Laplace’s equations, multipole expansion, electric polarization and dielectrics, magnetostatics, magnetization, Faraday’s law of induction, and Maxwell’s equations. Prerequisite: PHYS 416 or Graduate standing.

PHYS 620. Quantum Mechanics I Credit 3 (3-0)
This course covers the basic theory and postulates of quantum mechanics with applications to one-dimensional potential problems. The one electron atom, theory of angular momentum, perturbation theory, approximation methods, and the matrix formalism of quantum mechanics will be covered. Prerequisite: Senior or Graduate standing.

PHYS 630. Statistical Mechanics Credit 3 (3-0)
Fundamentals of classical and quantum statistical mechanics: statistical ensembles and distribution functions, non-interacting particles, ideal Fermi and Bose systems, treatment of interacting systems, phase transitions, approaches to collective phenomena. Prerequisite: PHYS 430 or Graduate standing.

PHYS 651. Advanced Astrophysics Credit 3 (3-0)
This course is a study of radiation from stars and nebulae to determine the basic stellar characteristics and the composition and physical conditions of matter in and between the stars. It also investigates the structural properties of our Milky Way galaxy, as evidenced by the spatial distribution. Prerequisite: Senior or Graduate standing.

PHYS 680. Advanced Solar Physics Credit 3 (3-0)
This course is an advanced study of solar physics. It covers topics such as the Sun as a star, solar photosphere and outer convection zone, granulation and related phenomena, solar chromosphere and corona, sun’s radio emission, solar-terrestrial relations, and magnetic structure. It also treats the theory of convection, wave motion in the presence of magnetism and gravity, coronal heating theories, steady and nonsteady flows, dynamo theory, and the theory of solar flares and other transient phenomena. Prerequisite: Senior or Graduate standing.
PHYS 695. Space and Atmospheric Science
This course is a study of space and atmospheric science. It includes space-based operation, remote sensing studies of the Earth and distant objects, in-situ measurement of the space environment, composition of the Earth’s atmosphere, application of thermodynamics to atmospheric problems, and development of the fundamental equations of fluid motion. Applications to synoptic scale atmospheric circulations, boundary layer effects, global circulation, and physical meteorology are also treated. Prerequisite: Senior or Graduate standing.

Graduate Students Only

PHYS 715. Advanced Electromagnetism
This course is an advanced study of electromagnetic phenomena: plane electromagnetic waves and wave propagation, wave guides and resonant cavities, radiating systems, radiation by moving charges, special theory of relativity, and applications of electromagnetic theory. Prerequisite: PHYS 615.

PHYS 720. Quantum Mechanics II
This course covers applications of quantum mechanics to atomic, molecular, nuclear, solid state and semiconductor physics. Prerequisite: PHYS 620.

PHYS 730. Optical Properties of Matter
Classical wave properties of light and quantum mechanical treatment of the interaction of light and matter: interference, diffraction, absorption, scattering, and polarization of light, interaction with atoms, atomic structure, optical absorption and emission, laser theory. Prerequisite: Graduate standing or consent of the instructor.

PHYS 735. Physics of Atoms, Molecules and Nanosystems
This course is a study of one- and many-electron atoms, and the molecular structure and spectra of diatomic and polyatomic molecules with introductory applications to nanoscience. The course also covers other topics that include the quantum nature of the nanoworld and self-assembled nanostructures in nature and industry. Prerequisite: Graduate standing.

PHYS 736. Spectroscopic Techniques
This course describes the methods and instrumentation of several spectroscopic techniques such as laser spectroscopy, optical resonance spectroscopy, supersonically cooled molecular spectroscopy, multiple-photon spectroscopy, photoelectron spectroscopy, Raman scattering, Mössbauer spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, and mass spectroscopy. Prerequisites: PHYS 465, 420 or Graduate standing.

PHYS 737. Physics of Solids
An advanced study of the physics of solids with applications to metals, semiconductors, and insulators. Topics include electronic structures, dynamics of electrons in solids, transport properties, optical properties, magnetic properties, and superconductivity. Prerequisite: Graduate standing or consent of the instructor.

PHYS 738. Nuclear Physics
Descriptions of properties of the nuclear force and nuclear structure: nucleon-nucleon scattering, nuclear scattering theory, phenomenological potential models, the shell model, collective motion, giant resonances, direct and compound reactions, few-body systems, heavy-ion physics. Prerequisite: Graduate standing or consent of the instructor.

PHYS 739. High Energy Physics
Theoretical and experimental concepts in high-energy physics. Topics include elementary particles; conservation laws; strong, weak, and electromagnetic interactions; particle accelerators; beams and detectors; strange particles; and quark models. Prerequisite: PHYS 738 or Graduate standing.

PHYS 740. Graduate Seminar
A survey of current developments in physics.
PHYS 743. Experimental Methods Credit 3 (2-3)
Theory and techniques of measurement in experimental physics: experimental design, detector development, signal processing techniques, data acquisition, error analysis, statistics and the treatment of experimental data. Prerequisite: Graduate standing or consent of the instructor.

PHYS 744. Introduction to Computational Methods in the Physical & Biological Sciences Credit 3(3-0)
This course will offer an introduction to computational methods used in physics, chemistry and biology. It will survey the various methods used in those areas and give hands-on experience with some software. This may include, but not be limited to: quantum chemistry calculations, electronic structure, empirical force fields and molecular mechanics, energy minimization, Monte Carlo and molecular dynamics simulations, structure of proteins, RNA/DNA sequence search and pattern recognition.

PHYS 745. Computational Physics Credit 3 (2-3)
Computational approaches to advanced physical problems. Includes ordinary differential equations, boundary value and eigenvalue problems, matrix operations, Monte Carlo methods, nonlinear equations, curve fitting, and approximation of functions. Prerequisite: Graduate standing or consent of instructor.

PHYS 750. Relativistic Quantum Mechanics I Credit 3 (3-0)
Along with PHYS 751 covers the Dirac equation and elementary mass renormalization, propagator theory, second quantization, the quantization of the electromagnetic field, Feynman graphs, calculations in quantum electrodynamics and quantum chromodynamics, gauge theories, models of electromagnetic, weak and strong interactions. Prerequisite: PHYS 720 or Graduate standing.

PHYS 751. Relativistic Quantum Mechanics II Credit 3 (3-0)
A continuation of PHYS 750. Prerequisite: PHYS750.

PHYS 760. Special Topics Variable Credit 1-3
Studies in physics under faculty guidance. Prerequisite: Graduate standing.

PHYS 770. Research Variable Credit 1-9
This course is supervised research under the mentorship of a faculty mentor. It is not necessarily intended to serve as the project or thesis topic of a master’s student.

PHYS 791. Masters Project Credit (3-0)
The student will conduct a research project under the supervision of an advisor. The project could be experimental, theoretical, or a literature survey on a topic of interest to the student. This course is available to project option students. Prerequisite: Consent of advisor and masters standing.

PHYS 792. Masters Thesis Variable Credit 1-6
The Master of Science thesis research will be conducted under the supervision of a thesis advisor to the completion of a masters thesis. The course is available to thesis option students. Prerequisite: Consent of advisor and masters standing.

PROFESSIONAL TEACHERS PROGRAM

PHYS 705. Physics for Science Teachers I Variable Credit 1-6
For in-service teachers. Course covers fundamentals of astronomy and earth science. Full descriptive title, syllabus and the amount of credit will have received departmental approval before scheduling. Prerequisite: MATH 111 or equivalent.

PHYS 706. Physics for Science Teachers II Variable Credit 1-6
For in-service teachers. Lecture and integrated lab study of the fundamental principles of mechanics, thermodynamics, wave motion, electricity and magnetism, optics and modern physics. Full descriptive title, syllabus and the amount of credit will have received departmental approval before scheduling. Focus: Mechanics and Thermodynamics. Prerequisite:
MATH 111 or equivalent.

PHYS 707. Physics for Science Teachers III
Variable Credit 1-6
A continuation of PHYS 706. Focus: Wave motion and electricity and magnetism.
Prerequisite: PHYS 706 or equivalent.

PHYS 708. Physics for Science Teachers IV
Variable Credit 1-6
A continuation of PHYS 707. Focus: Optics and modern physics. Prerequisite: PHYS 707 or equivalent.

PHYS 709. Physics for Science Teachers V
Variable Credit 1-6
A continuation of PHYS 708. Focus: Modern Physics. Prerequisite: PHYS 708 or equivalent.

Graduate Faculty

Department: Physics
Chair: Dr. Abdellah Ahmidouch

Abdellah Ahmidouch, B.S., Mohammed V. University; M.S., Joseph Fourier Grenoble I University; Ph.D., University of Geneva; Associate Professor and Chairperson

Solomon Bililign, B.S., M.S., Addis Ababa University; Ph.D., University of Iowa; Professor

Samuel S. Danagoulian, M.S., Yerevan State University; Ph.D., Yerevan Physics Institute; Professor

Ashot Gasparian, B.S., Yerevan State University, Ph.D., Yerevan Physics Institute; Associate Professor

Floyd J. James, B.S., M.S., Ph.D., University of N.C. at Chapel Hill; Associate Professor

Abebe B. Kebede, B.S., Addis Ababa University; M.A., Ph.D., Temple University; Associate Professor

Melvyn Levy, Ph.D., Indiana University; Research Professor

Ronald S. Pedroni, B.A., Jacksonville University; Ph.D., Duke University; Associate Professor
Social Work

Joint Master of Social Work Program*
Department of Sociology & Social Work
Dr. Arnold Barnes (NCA&TSU), Co-Director - 336-334-7894
Dr. Jacalyn A. Claes (UNCG), Co-Director - 336-334-4106

The Joint Master of Social Work (JMSW) program represents the efforts of faculty and administrators at North Carolina Agricultural and Technical State University (NCA&TSU) and the University of North Carolina at Greensboro (UNCG). This is a single academic program with instruction by faculty from each department. Students attend classes on the campuses of both universities and have access to all academic and support services of the two universities.

Successful completion of the degree requires 60 credit hours. The Joint Master of Social Work Program is accredited by the Council on Social Work Education.

The JMSW curriculum has been designed by the joint faculty from both institutions to provide students with advanced generalist social work education. The model for the curriculum is based on contemporary, state-of-the-art theory and practice methods. Courses reflect the theme of providing effective services to families in urban and rural North Carolina communities. The curriculum is organized by foundation, area of practice, advanced generalist integrative seminars, and field instruction. The primary purpose of the MSW program is to prepare students for advanced generalist social work practice.

* Jointly administered with UNCG

Program goals are:

Goal 1: To prepare graduate students for employment as advanced generalist social work practitioners in direct and indirect practice.

Goal 2: To provide students with a graduate advanced generalist social work curriculum that results in the acquisition and demonstration of:
 A. Knowledge of human behavior and the social environment, social welfare policy, research, practice methods, cultural diversity populations at-risk, social and economic justice, and social work values and ethics as a foundation for generalist social work practice
 B. The professional self as reflected in an affiliation with the profession of social work
 C. The values and ethics of professional social work practice as stated by the National Association of Social Worker’s Code of Ethics
 D. Advanced generalist social work practice skills with individuals, families, groups, organizations, and communities.

Goal 3: To provide professional service that ameliorates social problems, provides leadership, and benefits our communities in Central and Western North Carolina.

Goal 4: To conduct and disseminate research that contributes to the knowledge base for effective social work practice.

CURRICULUM PLAN

The curriculum design of the program provides students with a theoretical and applied education in social work to enhance and promote advanced generalist social work education. The two-year program is organized to insure that all students, as advanced social work practitioners, will be prepared to independently engage in social work practice with individuals, families, small groups, organizations, and communities in their chosen area of practice. Students will be prepared to serve as managers, supervisors, researchers and social planners. The concentration of the program is advanced generalist practice.
FOUNDATION YEAR

During the first year, students complete 30 semester hours of foundation course work. In the first semester of the first year, students complete courses in human behavior and social functioning, social welfare policy, social work practice and human diversity, social work practice with individuals and families, and social work practice with groups. In the second semester of the first year, students complete a second human behavior and social functioning course, social work practice with communities and organizations, social work research methods, and a six semester hour foundation field instruction placement and seminar. The purpose of the foundation course work during the first year is to prepare students for the advanced generalist practice year.

ADVANCED GENERALIST PRACTICE YEAR

In the second year of study, students complete the concentration in advanced generalist practice. The second year of study requires the completion of 30 semester hours of course work. Students choose one of two advanced generalist practice areas: families and youth at-risk or health/mental health. Students complete two courses in their advanced generalist practice area, advanced courses in social welfare, administration, and research, and they complete two semesters of advanced generalist field instruction, which includes a field seminar and a capstone project. Students also complete one graduate level elective. Choice of this elective requires the approval of the student’s educational advisor.

ADVANCED STANDING

Students in the Advanced Standing plan of study begin their graduate coursework in the summer taking 12 credit hours of course in two sessions. This coursework builds a content bridge between Bachelor of Social Work coursework and the advanced year curriculum of the JMSW Program.

COURSE OF STUDY AND DEGREE REQUIREMENTS

The JMSW Program requires successful completion of 60 credit hours. Completion of the program requires full time enrollment by students in the two-year plan of study. The program offers a foundation year and a second year of concentration content for advanced practice.

First Year Foundation Courses (30 Hours)

<table>
<thead>
<tr>
<th>NCA&TSU</th>
<th>UNCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>15 Credit Hours</td>
</tr>
<tr>
<td>SOWK 700</td>
<td>Human Behavior and Social Functioning I</td>
</tr>
<tr>
<td>SOWK 701</td>
<td>Social Welfare Policy and Analysis I</td>
</tr>
<tr>
<td>SOWK 703</td>
<td>Social Work Practice with Individuals and Families</td>
</tr>
<tr>
<td>SOWK 704</td>
<td>Social Work with Groups</td>
</tr>
<tr>
<td>SOWK 705</td>
<td>Social Work Practice and Human Diversity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Semester</td>
<td>15 Credit Hours</td>
</tr>
<tr>
<td>SOWK 702</td>
<td>Human Behavior and Social Functioning II</td>
</tr>
<tr>
<td>SOWK 707</td>
<td>Social Work Research Methods I</td>
</tr>
<tr>
<td>SOWK 708</td>
<td>Social Work Practice with Communities</td>
</tr>
<tr>
<td></td>
<td>and Organizations I</td>
</tr>
<tr>
<td>SOWK 709</td>
<td>Field Education I</td>
</tr>
<tr>
<td>SOWK 719</td>
<td>Field Seminar I</td>
</tr>
<tr>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year- Advanced Curriculum (30 Hours)

<table>
<thead>
<tr>
<th>First Semester Area of Practice Course Credit</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOWK 706 Social Policy and Welfare Analysis II</td>
<td>3</td>
</tr>
<tr>
<td>SOWK 710 Social Work with Families and Youth at Risk I or</td>
<td>3</td>
</tr>
<tr>
<td>SOWK 712 Social Work in Health and Mental Health I</td>
<td>SWK 638</td>
</tr>
<tr>
<td>SOWK 718 Research Designs & Data Analysis for Social Work Practice</td>
<td>SWK 634</td>
</tr>
<tr>
<td>SOWK 722 Field Education II</td>
<td>5</td>
</tr>
</tbody>
</table>
Students in the **three-year plan of study** complete the JMSW Program according to the following curriculum sequence:

Year One (15 Credits)
First Semester (Summer – 3 Credits)
SOWK 701 Social Welfare Policy and Analysis I (3)

Second Semester (Fall – 6 Credits)
SOWK 700 Human Behavior and Social Functioning I (3)
SOWK 703 Social Work Practice with Individuals and Families (3)

Third Semester (Spring – 6 Credits)
SOWK 704 Social Work with Groups (3)
SOWK 705 Social Work Practice and Human Diversity (3)

Year Two (18 Credits)
First Semester (Summer – 6 Credits)
SOWK 709 Field Education I (5)
SOWK 719 Field Seminar I (1)

Second Semester (Fall – 6 Credits)
SOWK 702 Human Behavior and Social Functioning II (3)
SOWK 708 Social Work Practice with Communities and Organizations I (3)

Third Semester (Spring – 6 Credits)
SOWK 706 Social Policy and Welfare Analysis II (3)
SOWK 707 Social Work Research Methods I (3)

Year Three (27 Credits)
First Semester (Summer – 3 Credits)
SOWK 716 Social Work in Administration (3 Credits)

Second Semester (Fall – 12 Credits)
SOWK 710 Social Work with Families and Youth at Risk I (3) or
SOWK 712 Social Work in Health and Mental Health I (3)
SOWK 718 Research Designs & Data Analysis for Social Work Practice (3)
SOWK 722 Field Education II (5)
SOWK 721 Field Seminar II (1)
Third Semester (Spring – 12 Credits)
SOWK 711 Social Work with Families and Youth at Risk II (3) or
SOWK 713 Social Work in Health and Mental Health II
Elective (3)
SOWK 723 Field Education III (5)
SOWK 725 Field Seminar III (1)

The Advanced Standing plan of study of the MSW Program is a one-year plan of study consisting of 42 credits that will require full time enrollment by students with Bachelor of Social Work Degrees. The program requires completion of four bridge/transition courses in the summer followed by a year of concentration content for advanced practice.

Summer Bridge/Transition Course (12 Hours)

<table>
<thead>
<tr>
<th>NCA&TSU</th>
<th>6 Credit Hours</th>
<th>UNCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Semester I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOWK 705</td>
<td>Social Work Practice and Human Diversity</td>
<td>3</td>
</tr>
<tr>
<td>SOWK 731</td>
<td>Social Work with Individuals and Families: Theory, Behavior, & Practice</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summer Semester II</th>
<th>6 Credit Hours</th>
<th>UNCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOWK 707</td>
<td>Social Work Research Methods I</td>
<td>3</td>
</tr>
<tr>
<td>SOWK 732</td>
<td>Social Work with Groups, Communities, & Organizations</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Year –Advanced Curriculum (30 Hours)

<table>
<thead>
<tr>
<th>NCA&TSU</th>
<th>UNCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester Area of Practice Course Credit</td>
<td></td>
</tr>
<tr>
<td>SOWK 706</td>
<td>Social Policy and Welfare Analysis II</td>
</tr>
<tr>
<td>SOWK 710</td>
<td>Social Work with Families and Youth at Risk I or</td>
</tr>
<tr>
<td>SOWK 712</td>
<td>Social Work in Health and Mental Health I</td>
</tr>
<tr>
<td>SOWK 718</td>
<td>Research Designs & Data Analysis for Social Work Practice</td>
</tr>
<tr>
<td>SOWK 722</td>
<td>Field Education II</td>
</tr>
<tr>
<td>SOWK 721</td>
<td>Field Seminar II</td>
</tr>
</tbody>
</table>

Second Semester Area of Practice Course Credit			
SOWK 711	Social Work with Families and Youth at Risk II or	3	SWK 642
SOWK 713	Social Work in Health and Mental Health II	3	SWK 643
SOWK 716	Social Work in Administration	3	SWK 639
Elective	3		
SOWK 723	Field Education III	5	SWK 640
SOWK 725	Field Seminar III	1	SWK 641

Total Hours 42

ADMISSIONS

Admissions for the JMSW program rotates between the two campuses every four years. A Joint Admissions Committee has been established for this program. It is comprised of faculty members from NCA&TSU and faculty members from UNCG. These committee members use a common evaluation system to review applications and recommend applicants for admission.

In addition to the admission materials set forth by The Graduate School, applicants must complete the following prerequisites to become eligible for admissions review:
1. Completion of a baccalaureate degree, with competitive grades, from an accredited college or university in the United States or its equivalent in another country;
2. A 3.0 grade point average or better in the undergraduate major;
3. An acceptable score on the GRE;
4. Evidence of a liberal arts foundation to include the following minimum 30 credit hours:
 18 Social and Behavioral Sciences*
 6 Humanities
 3 Human Biology
 3 Statistics
 30 Hours
5. Applicants must demonstrate intellectual and personal qualifications considered essential to the successful practice of social work, such as sensitivity and responsiveness in relationships, concern for the need of others, adaptability, good judgment, creativity, integrity, and skill in oral and written communication. This determination shall be based on a review of the applicant’s references and written personal statement.

Documentation validating that applicants meet the above criteria will be required in the admission packet. Members of the Joint Admissions Committee and staff at the two graduate schools will verify that acceptable validation of these five criteria have been included in applicants admission materials.

The Joint Admissions Committee has established five areas that will be rated to determine admission decisions:
1. Acceptable GRE scores;
2. GPA averaged from all undergraduate and graduate degrees;
3. Three letters of recommendation;
4. Relevant paid and/or volunteer experience (including internships in social work);
and,
5. A personal statement indicating why applicant is seeking admission, what applicant wants to learn and the factors that influenced this decision.

Consistent rating measures have been established for the evaluation of the five above areas. The Joint Admissions Committee has developed a review process that ensures a consistent and fair evaluation of applicants. All applicants will be notified in writing of the Joint Admissions Committee decisions by The Graduate School.

The M.S.W. Program does not grant academic credit for life or work experience. Only students who have been admitted to the program and who have completed all required prerequisite course work may be admitted to practice courses and to the field instruction program.

Applicants to the Advanced Standing plan of study must have earned a Bachelor of Social Work degree from a Council on Social Work Education accredited program, have a GPA in social work courses of 3.2 or better, and provide a letter of recommendation from his/her B.S.W. field supervisor (as one of the three recommendations required).

The program admits students only once a year for Summer and Fall semester enrollment. Questions concerning the MSW program may be addressed to the Department of Sociology & Social Work, NCA&TSU. The phone number is (336) 285-2049. All inquiries concerning admission for Fall 2008 and Fall 2009 should be directed to: The Graduate School, University of North Carolina at Greensboro, PO Box 26176, Greensboro, NC 27402-6176. The phone number is (336) 334-5596.

COURSE DESCRIPTIONS IN SOCIALWORK

SOWK-700. Human Behavior and Social Functioning I Credit 3 (3-0)
This course is the first of a two course sequence on human behavior in the social environment. This course emphasizes theories of human behavior and intervention with people in a variety of systems, including individuals, families, and small groups. Students will learn an ecological framework for understanding and assessing human behavior in social and cultural contexts. Content about various oppressed and vulnerable groups is included. Culture is examined to analyze how it affects clients and workers perceptions of problems, their conceptualizations of

SOWK-701. Social Welfare Policy and Analysis I
Credit 3 (3-0)
This first foundation policy course is designed to help the student examine philosophical, social, political, psychological, and economic factors that have influenced the emergence of social welfare as a social institution. Students learn to analyze social policy for its effects on individuals, families, various oppressed and vulnerable groups, and communities. The impact of social policy on service delivery in rural areas will be highlighted. This is the first of two policy courses.

SOWK-702. Human Behavior and Social Functioning II
Credit 3 (3-0)
Human Behavior and Social Functioning II provides students with the knowledge necessary to analyze institutional, social and cultural environments in which human behavior occurs, and the reciprocal interaction between individuals, communities, organizations, groups and families. The course provides students with the concepts and knowledge necessary to understand adult development and the development of families and groups in community. HBSF II builds on personality and developmental theory that was introduced in HBSF I to emphasize the biopsychosocial-spiritual nature of human beings in their family environment. This course presents groups and families as social entities that affect and are affected by individual social functioning and behaviors.

SOWK-703. Social Work Practice with Individuals and Families
Credit 3 (3-0)
The specific focus of this course is direct practice with individuals and families. Students will learn interviewing and interpersonal helping skills; how to conduct psychosocial assessments and select appropriate intervention approaches based on client goals, problems, and strengths; and how to implement those interventions. Students are also introduced to the concept of evaluation of direct practice in relation to each practice theory they study. Effective oral and written communication and technology skills necessary for professional practice are stressed.

SOWK-704. Social Work with Groups
Credit 3 (3-0)
The purpose of this course is to prepare students for entry into field instruction. In this course students will begin to develop the knowledge and skills necessary for advanced generalist practice with groups. Students will learn four basic group work models. Special attention is devoted to developing relationships and working effectively at the mezzo level with individuals of diverse cultural and racial backgrounds along with populations at risk. Students will learn how to effectively set-up, plan, facilitate and evaluate groups across social work settings. This course will provide hands on learning through a small group experience as part of each class.

SOWK-705. Social Work Practice and Human Diversity I
Credit 3 (3-0)
This course will examine cultural and social diversity and address theoretical and practice dimensions of social practice with oppressed people of color, women, the aged, the sexually diverse, and the physically disabled. The concepts of ethnicity, minority status, social stratification, and sexual preference are explored in the context of American culture and are translated into the impact of dealing with these issues with clients, the system, and with the helper.

SOWK-706. Social Welfare Policy and Analysis II
Credit 3 (3-0)
This course, the second foundation course in social welfare policy, presents social welfare policy analysis as another form of social work practice, with a repertoire of roles, functions, and skills as in other practice concentrations such as interpersonal or planning and management. As a part of this school’s professional curriculum, the course will embody the primary value of social justice as it examines policies, programs and current delivery systems in addressing issues affecting families, mental and health care. Strategies to shape and frame policy at various levels are addressed.
SOWK-707. Social Work Research Methods I Credit 3 (3-0)
This course is the first of two research courses in the MSW curriculum. The intention of both courses is to prepare the social work practitioner to use research as a means of informing and improving one’s professional practice. The primary purpose of this course is to provide a framework for the rigorous study of research methodology as it relates to the professional practice of social work. As a result of this course, students will learn, appreciate, and be able to apply quantitative and qualitative research strategies to address fundamental social work problems and processes.

SOWK-708. Social Work Practice with Communities, and Organizations Credit 3 (3-0)
This course is designed to prepare students to practice in the area of macro social work. Advanced generalist social workers must be prepared to respond to and influence changing social and political environments. This course prepares students for involvement in broad scale social systems change particularly in group, community, and organizational development and analysis. This course provides a framework for exploring knowledge, analytical skills, and professional behavior appropriate for practice with work groups, communities, and organizations. Particular emphasis will be given to the multidimensional strategies for professional intervention.

SOWK-709. Field Education I Credit 5 (5-0)
This course is the first field experience. The purpose of this course is to provide an opportunity for students to synthesize theoretical knowledge together with application in a variety of agency settings and among diverse client systems. Students are expected to apply theories and concepts from previous and current courses to enact the role of a professional social work practitioner with the client systems of various field agency experiences.

SOWK-710. Social Work with Families and Youth at Risk I Credit 3 (3-0)
This is the first course in the concentration on Social Work with Families and Youth at Risk. This course will integrate elements of social policy that affect families with the theory, knowledge, and skills necessary to work with diverse family forms at different stages of life. Building on foundation year content regarding the families, this course will prepare students to assess and intervene with families at an advanced level. An ecological systems perspective will be utilized to help students understand the relationships between individuals and their families and between families and the various social systems with which they interact.

SOWK-711. Social Work with Families and Youth at Risk II Credit 3 (3-0)
This is the second course in the concentration sequence on Social Work with Families and Youth at Risk. This course will build on the advanced knowledge and skill gained in the previous course and allows students to apply that knowledge to specific problems faced by families across the life span. By participating in this problem-focused course, students will have an opportunity to learn more about the types of problems families face in the United States and how to use various interventive models most appropriate to specific types of problems.

SOWK-712. Social Work in Health and Mental Health I Credit 3 (3-0)
This course is the first of two courses in the Health and Mental Health area of practice. This first course focuses on health and mental health disorders across the life span as well as an exploration of the complex interrelationships between health and mental health care practices, social work values, and ethical dilemmas. Students will integrate knowledge and skills to engage in advanced generalist social work practice in health and mental health settings. This course will address policy and procedural issues unique to the administration and program services within health and mental health settings.

SOWK-713. Social Work in Health and Mental Health II Credit 3 (3-0)
This is the second course in the Health and Mental Health area of practice. This course continues to focus on health and mental health disorders across the life span as well as an examination of effective direct and indirect practice interventions. Material on models for working with clients, family members, and caregivers, will be covered. Attention is given to understanding differential patterns of health care service utilization and delivery based on demographic characteristics such as age, race, ethnicity, gender, and sexual orientation. Current policy initiatives and social work roles within health and mental health settings are examined.
SOWK-716. Social Work in Administration Credit 3 (3-0)
As advanced generalist practitioners, students must be prepared for indirect as well as direct practice roles. The purpose of this course is to provide students with the basic knowledge and skills necessary to function as a social work supervisor and manager. Students from the three concentrations will take this course together, thus allowing all students to gain a broader understanding of social work administrative issues in various fields of practice. This course will highlight specific issues relevant to social work management in both urban and under-served rural areas.

SOWK-718. Research Designs and Data Analysis for Social Work Practice Credit 3 (3-0)
This course is the second of two research courses in the MSW curriculum. The intention of both courses is to prepare the social work practitioner to use research as a means of informing and improving one’s professional practice. Students will be able to apply quantitative and qualitative research strategies to address fundamental social work problems and processes.

SOWK-719. Field Seminar I Credit 1 (1-0)
This course assists students in the integration of theory and classroom knowledge into their field practice.

SOWK-721. Field Seminar II Credit 1 (1-0)
This course is a continuation of Field Seminar I, assisting students to integrate theory and classroom knowledge into their advanced generalist agency field practice.

SOWK-722. Field Education II Credit 5 (5-0)
The second year field experience is a culmination of the academic preparation for Social Work practice. As advanced generalist, students are expected to demonstrate understanding and application of social work theories, skills and interventions. Additionally, students are expected to assume greater independence in their own practice.

SOWK-723. Field Education III Credit 5 (5-0)
This course is a continuation of the second year advanced generalist field experience. Students apply theories and concepts to the role of a professional social work practitioner within a field agency.

SOWK-725. Field Seminar III Credit 1 (1-0)
This course is a continuation of Field Seminar II. It culminates the student’s advanced generalist agency field practice through the completion of capstones and other assignments.

SOWK-731. Social Work with Individuals and Families: Theory, Behavior, and Practice Credit 3 (3-0)
This course covers personality and family theories and their application to practice with individuals and families.

SOWK-732. Social Work with Groups, Communities, and Organizations Credit 3 (3-0)
This course addresses the practice of social work with groups, communities, and organizations through the examination and application of an advanced generalist framework.

SOWK-733. Independent Study Credit 3 (3-0)
This course permits a participant to develop and execute a learning contract with the instructor to analyze a problem in social work or social welfare through supervised study, outside the classroom setting. The problem must be selected from the scholarly literature of social work or social welfare. The work of the course must be submitted in the form of a written report.

Department of Sociology and Social Work
Dr. Robert Davis, Chairperson
201 Gibbs Hall
Note: The courses listed below are offered to advanced undergraduate and graduate students only. Please note that these courses are not part of the Joint Master of Social Work (JMSW) curriculum.

Courses Offered for Advanced Undergraduate and Graduate Students
SOCI-600 Seminar in Social Planning
SOCI-601 Seminar in Urban Studies
SOCI-603 Introduction to Folklore
SOCI-625 Sociology/Social Service Internship
SOCI-650 Independent Study in Anthropology
SOCI-651 Anthropological Experience
SOCI-669 Small Groups
SOCI-670 Law and Society
SOCI-671 Research Methods II
SOCI-672 Selected Issues in Sociology
SOCI-674 Evaluation of Social Programs
SOCI-701 Seminar in Cultural Factors in Communication

Graduate Faculty

Department: Sociology & Social Work/Joint Master of Social Work
Chair: Dr. Robert Davis

Fasihuddin Ahmed, B.A., Forman Christian College; M.A., University of the Punjab; Ph.D.,
University of Chicago; Professor
Arnold Barnes, B.A., University of Maryland Baltimore County; M.S.W., University of Maryland at Baltimore;
Ph.D., Washington University; Associate Professor
Glenna Barnes, B.S.N., Boston University; M.S.W., University of Maryland at Baltimore; Ph.D., Indiana
University; Assistant Professor
Phillip Carey, B.S., Oklahoma State University; M.S., Oklahoma State University; Ph.D., Oklahoma State
University; Professor.
Yoko S. Crume, B.A., International Christian University; M.S., University of Cincinnati; M.S.W., University of
North Carolina at Chapel Hill; Ph.D., University of North Carolina at Chapel Hill; Assistant Professor
Terrolyn P. Carter, B.S., Xavier University of Louisiana; M.S., University of Missouri-Columbia; Ph.D.,
University of Missouri-Columbia; Assistant Professor
Robert Davis, B.A., Southern University; M.A., Atlanta University; Ph.D., Washington State
University; Post-Doctoral, University of Wisconsin at Madison; Professor
Andrea N. Johnson, B.A., North Carolina A & T State University; M.S., North Carolina State University;
Lecturer
David Johnson, B.A., Hamilton College; M.A., University of North Carolina at Chapel Hill;
Ph.D., University of North Carolina at Chapel Hill; Associate Professor
Mary T. Lewis, B.A., Davis and Elkins College; M.S.W., University of Connecticut; Ph.D., Saybrook Graduate
School and Research Center; Assistant Professor
Wayne Moore, B.S., East Carolina University; M.S.W., Ohio State University; Ph.D.,
University of South Carolina; Associate Professor
Ernest Morant, B.A., Claflin College; M.S.W., New York University; Assistant Professor
Deirdre M. Posey, B.S.W., North Carolina A & T State University; M.S.W., North Carolina A & T State
University; Lecturer
Velma Tyrance, B.S., Tuskegee University; M.S.W., Fordham University; Assistant Professor
Elizabeth D. Watson, B.A., Columbia Union College; M.S.W., Howard University; Ph.D., Andrews University;
Associate Professor

ADJUNCT GRADUATE FACULTY – UNCG
Jacalyn Claes, B.S., Western Illinois University; M.S., Western Illinois University; M.S.W.,
University of Iowa; Ph.D., University of Iowa; Associate Professor.
Susan Dennison, B.S.W., University of Detroit; M.S.W., Barry University; Associate Professor
Elizabeth Lindsey, Diplome, University of Lyon; B.A., University of North Carolina at Chapel
Hill; M.S.W., University of Georgia; Ph.D., University of Georgia; Professor
Carolyn Moore, B.S., North Carolina A&T State University; M.S.S.A., Case Western Reserve
University; Lecturer
John Rife, B.A., Hanover College; M.S.W., Indiana University; M.A., Ohio State University;
Ph.D., Ohio State University; Professor

322
OBJECTIVE

The Department of Economics and Transportation/Logistics offers a program of study leading to the Master of Science in Management degree with a major concentration in Transportation and Supply Chain Management. The program prepares students and professionals for careers in public and private sector positions in transportation and supply chain management. The program blends traditional management education in the areas of marketing, management, and quantitative analysis, with specialized core competencies relating to transportation planning, transportation and business logistics, supply chain and materials management, and purchasing.

DEGREE OFFERED

Master of Science in Management – Transportation and Supply Chain Management

GENERAL PROGRAM REQUIREMENTS

The general requirements for admission are an undergraduate degree from an accredited institution with a grade point average of 2.6 (on a 4.0 scale), and a satisfactory GMAT score. Applicants who do not meet the requirements will be considered on an individual basis. A GPA of 3.0 is required for graduation.

PROGRAM REQUIREMENTS

Students with a variety of undergraduate majors are encouraged to apply. The program is designed to appeal to those who either currently work in industry or desire to affiliate with firms or organizations using cutting-edge tools to deliver their products or services. Students in the program will have a business undergraduate degree and wish to study a particular area in greater depth, or have a non-business degree with the personal or professional interests or experiences that would be enhanced by a high quality graduate program in management education.

The program requires a minimum of 36 semester hours. There is no thesis requirement. Students without an undergraduate business degree will be required to take appropriate foundation courses, which may extend the requirements to 48 semester hours. The program consists of 18 hours of core courses and 18 hours of coursework, including one 3-hour elective, in the T/SCM concentration.

The student pursuing the Master of Science in Management with a major concentration in Transportation and Supply Chain Management is required to complete a common core of courses consisting of:

- ACCT 714 Managerial Accounting & Finance 3 semester hours
- BUAD 713 Business Applications Development 3 semester hours
- BUAD 715 Quantitative Business Analysis 3 semester hours
- BUAD 716 Strategic Marketing 3 semester hours
- BUAD 718 Management & Organization Analysis 3 semester hours
- ECON 608 Managerial Economics 3 semester hours

ELECTIVE One course selected from the following:

- ACCT 643 Advanced Income Tax Accounting 3 semester hours
- BUAD 719 Information Systems Planning and Design 3 semester hours

Courses in the Transportation and Logistics concentration will consist of the following:

- TRAN 701 Strategic Logistics Management 3 semester hours
- TRAN 720 Analysis and Design of Supply Chain Systems 3 semester hours
- TRAN 725 Purchasing and Materials Management 3 semester hours
- TRAN 727 Global Supply Chain Management 3 semester hours
- TRAN 730 Transportation Planning 3 semester hours
Students without an undergraduate business-related degree will be required to take appropriate foundation courses, which consist of the following.

LIST OF GRADUATE COURSES

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 643 Advanced Income Tax Accounting</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 708 Seminar in Financial Concepts</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 714 Managerial Accounting & Finance</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 705 Methods in Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 712 Foundations of Enterprise Management</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 713 Business Applications Development</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 715 Quantitative Business Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 716 Strategic Marketing</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 718 Management & Organization Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BUAD 719 Information Systems Planning and Design</td>
<td>3</td>
</tr>
<tr>
<td>ECON 608 Managerial Economics</td>
<td>3</td>
</tr>
<tr>
<td>ECON 706 Seminar in Economics</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 701 Strategic Logistics Management</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 720 Analysis and Design of Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 725 Purchasing and Materials Management</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 727 Global Supply Chain Management</td>
<td>3</td>
</tr>
<tr>
<td>TRAN 730 Transportation Planning</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSES WITH DESCRIPTION IN ECONOMICS AND TRANSPORTATION AND SUPPLY CHAIN MANAGEMENT

BUAD 713. Business Applications Development

This course focuses on the use of object-oriented programming to develop applications for business solutions. Topics include user-interface design, basic programming logic and techniques, database concepts, and database applications.

BUAD 719. Information Systems Planning and Design

This course provides students with an understanding of the concepts of planning, analysis, design, and implementation of modern information systems and information architectures. Project planning and design issues will be discussed in terms of the traditional systems developmental life cycle, business object models, object oriented analysis and design, and process analysis. Students will use a variety of contemporary tools such as Unified Modeling Language (UML), Computer Aided Software Engineering (CASE), Business Process Management (BPM) and Project Management in their project work. Prerequisite: BUAD 713

ECON-608. Managerial Economics

This course will apply economic principles to decision-making in management. The basic tools and methods of analysis are derived mainly from microeconomics. Additional tools discussed include statistical methods, operations research, financial analysis, and decision-making theory that are applied to managerial problems. Particular emphasis will be placed on demand analysis, forecasting, pricing and output decisions, cost-benefit analysis, present value analysis, cost-benefit analysis, capital budgeting, risk analysis, and decision-making under uncertainty.

ECON-706. Seminar in Economics

This course introduces basic microeconomic principles and their applications in business. Basic economic concepts, including marginal analysis of consumer and firm decisions, will be covered along with macroeconomic theories that support managers’ understanding of the global economic environment and the economic policies affecting that environment.
TRAN-701. Strategic Logistics Management Credit 3 (3-0)
This course is designed to introduce students to the critical role of logistics in the achievement of strategic objectives. This approach involves all activities associated with moving raw materials, inventory, and finished goods from the point of origin to the point of use or consumption. The course addresses logistics strategy, planning, customer service goals, transportation fundamentals and decision-making, transportation strategy, inventory and location strategies, organization and control.

TRAN-720. Analysis and Design of Transportation and Logistics Systems Credit 3(3-0)
This logistics modeling course deals with various ways of modeling logistics forecasts to facilitate supply chain management, mode selection, distribution planning, facility location, network design and optimization, routing and scheduling. Software will be used extensively to model logistics and supply chain applications.

TRAN-725. Purchasing and Materials Management Credit 3(3-0)
This course focuses on purchasing as the integration of long-term materials planning with corporate strategic planning process. The increasingly strategic role played by the purchasing professional in an organization is also examined. Areas receiving special attention include collaborative participation in the identification and procurement of key material requirements, determination and application of supplier qualification and selection activities, implementation of supplier development programs, relationship building programs, and participation in supply chain development decisions.

TRAN-727. Global Supply Chain Management Credit 3(3-0)
This course addresses issues in global supply chain management. Some topics addressed are international sourcing, evaluating international suppliers, outsourcing, financial management issues, relationship management, information management, and selecting international carriers. The course relies on cases to understand and solve problems in global supply chain management.

TRAN-730. Transportation Planning Credit 3(3-0)
This course addresses the transportation planning process and related activities. Topics of special focus are modal classifications, data requirements, transportation demand analysis, methods of evaluation (GIS, cost-benefit analysis, internal rate of return, payback period, etc). Others are multiple criteria evaluation method, post-project evaluation, finance, transportation demand management, and issues in intelligent transportation systems.

Graduate Faculty

Department: Economics and Transportation/Logistics
Interim Chair: Dr. John A. Cole

Abdussalam Addus, B.A., Addis Ababa University; M.S., University of Wisconsin; Ph.D., Pennsylvania State University; Associate Professor
Julian Benjamin, B.S., New York University; M.S., Ph.D., State University of New York at Buffalo; Professor
Mark Burkey, B.S., Appalachian State University; Ph.D., Duke University; Assistant Associate Professor
David Chen, B.S., National Taiwan University; M.S., New Mexico State University; Ph.D., University of Wisconsin; Associate Professor
Joong-Kun Cho, B.A., Korea Military Academy; M.S., U.S. Naval Postgraduate School; M.B.A., University of Arkansas; Ph.D., University of Arkansas; Assistant Professor
John A. Cole, B.A. University of Alberta (Canada); Ph.D. University of Michigan; Associate Professor and Interim Department Chair
Jeffrey Edwards, B.A. University of North Carolina at Chapel Hill; M.A., Ph.D. Virginia Polytechnic Institute and State University; Associate Professor
Basil Coley, B.S., A&T College; M.S., Pennsylvania State University; Ph.D., University of Illinois; Professor Emeritus
Dong Jeong, B.A., Teachers College, Kyung-Pook National University, Korea; M.A.,
University of Hawaii; Ph.D., Wayne State University; Associate Professor
Krishna Kasibhatla, B.A., S.K.B.R. College, India; M.A., Andhra University, India;
Ph.D. Rutgers University; Associate Professor
Vereda King, B.A., Johnson C. Smith University; M.B.A., North Carolina Central University;
Ph.D., Duke University; Associate Professor
Lawrence Morse, B.A., Oberlin College; Ph.D., University of Minnesota; Associate Professor
Kofi Obeng, B.Sc., University of Science & Technology (Kumasi, Ghana); A.M., Ph.D.,
University of Pennsylvania; UPS Chair, Professor
Madhav Pappu, B.E., Andhra University; M.E., Virginia Polytechnic and State University; M.B.A., Ph.D.,
University of Tennessee; Associate Professor and Director of the Transportation Institute
Ryoichi Sakano, B.S., Keio University; M.B.A., M.A., University of North Carolina at
Greensboro; Ph.D., University of Alabama; Associate Professor
Harry Sink, B.S., M.B.A., Ph.D., University of Tennessee; Associate Professor
Hal Snarr, B.S., State University of New York; B.S. Idaho State University; Ph.D.
Washington State University; Assistant Professor
Christopher Walson, B.S., M.S., North Carolina A & T State University; Ph.D. University of Illinois; Assistant
Professor
ADMINISTRATION, UNIVERSITY OF NORTH CAROLINA
University of North Carolina
(Sixteen Constituent Institutions)
Officers of Administration

Erskine B. Bowles, President
Harold L. Martin, Vice President for Academic Affairs
Alan R. Mabe, Vice President for Academic Planning & University-School Programs
Robert Nelson, Vice President for Finance
Robyn R. Render, Vice President for Information Resources and Chief Information Officer
Leslie J. Winner, Vice President and General Counsel
Russ Lea, Vice President for Research and Sponsored Programs
Cynthia J. Lawson, Vice President for Communications and Strategy Development
Kimrey Rhinehardt, Vice President for Federal Relations
Andy Willis, Vice President for Government Relations
Bart Corgnati, Secretary of the University

BOARD OF GOVERNORS
The University of North Carolina
Jim W. Phillips, Jr., Chairperson
J. Craig Souza, Vice Chairperson
Estelle Sanders, Secretary

Bradley T. Adcock Laura W. Buffaloe Ray S. Farris Clarice C. Goodyear
Brent D. Barringer Frank Daniels, Jr. Dudley E. Flood H. Frank Grainger
Peaches G. Blank John W. Davis, III Hannah D. Gage Peter D. Hans
R. Steve Bowden Phillip R. Dixon Ann B. Goodnight Charles A. Hayes

Adelaide D. Key Charles H. Mercer. Irvin A. Roseman David W. Young
G. Leroy Lail Fred G. Mills William G. Smith
Ronald C. Leatherwood Marshall B. Pitts Priscilla P. Taylor
Cheryl R. Locklear Gladys A. Robinson J. Bradley Wilson

Emeritus Member
James E. Holshouser Jr.
POLICY GOVERNING PROGRAMS AND COURSE OFFERINGS

All provisions, regulations, degree programs, course listings, etc., in effect when this catalogue went to press are subject to revision by the appropriate governing bodies of North Carolina Agricultural and Technical State University. Such changes will not affect the graduation requirements of students who enroll under the provisions of the catalogue.

Piedmont Independent College Association of North Carolina

The Piedmont Independent College Association of North Carolina is an organization comprised of North Carolina Agricultural and Technical State University, The University of North Carolina at Greensboro, High Point College, Greensboro College, Bennett College, Guilford College, and Guilford Technical Community College. The organization promotes inter-institutional cooperation and cooperative educational activities among the seven institutions. Agreements provide the opportunity for any student to enroll at another institution for a course or courses not offered on one’s home campus.

RESOURCES AND STUDENT SERVICES

Office of Development and University Relations

The mission of the Office of Development and University Relations is to expand relationships of the University with its many publics for the purposes of increasing both the financial and human resources of the University; to maintain the goodwill of the University’s many publics; and to market the University, its programs and services to their best possible advantages.

GOALS

• Generate support and goodwill for the University through an effective program of internal and external relations;
• Create opportunities through which the interest, understanding, and assistance of the alumni can be effectively utilized to help maintain the University as a strong viable institution;
• Supplement and complement the attributes of the University by cultivating and relating the broad diversity of expertise and resources of the business community to the institution; and
• Provide the University community with ongoing assistance and support in securing gifts, grants and contributions from the private business-industrial sector to support academic and other programs.
Division of Research & Economic Development

The Division of Research and Economic Development’s (DORED) mission is to increase research through enhanced faculty participation and to aid in transforming and transitioning more of the University’s research into new products and jobs for economic development. True to that mission, the DORED works aggressively to expand the University’s relationship among research sponsors, develop relationships with the larger community and enhance the University’s competitiveness in the mainstream. Specifically, the Division of Research & Economic Development administers and manages research and sponsored programs as well as outreach, technology transfer and commercialization for the University. Headed by the Vice Chancellor for Research & Economic Development, the division is made up of the Vice Chancellor’s management team, the Office of Research Services, the Office of Sponsored Programs, the Office of Compliance, and the Office of Outreach and Technology Transfer.

FOOD SERVICE

The University seeks to provide dining for students at the most reasonable rate possible. Therefore, the University operates dining services on a contractual basis providing students with a healthy variety of nutritious foods on campus. Students assigned to University Housing accommodations are required to participate in the dining program. The dining program allows a student to choose a meal plan based on the number of meals per week (any 7, 14, 19 meals per week or the declining balance) or the Aggie Dining Dollars ($100, $200, $300, $400). Each meal plan comes with complimentary flex dollars. Students living off-campus are welcome to participate in the dining program. Dining at NC A&T State University offers students more of a variety with seven different retail locations and a main dining facility.

HOUSING AND RESIDENCE LIFE

http://www.ncat.edu/~housing/

Administering to the physical environmental needs, along with the personal, educational and cultural development of over 4,200 residents, Housing and Residence Life support students’ academic success. The Department strives to achieve this goal through the maintenance of comfortable, clean and safe living and learning environments, coupled with developing partnerships with other entities that attend to the critical thinking, problem-solving, and community and civic responsibility perspectives and understandings of students.

OFFICE OF CAREER SERVICES

http://www.careerserv.ncat.edu

The primary mission of the Office of Career Services at North Carolina Agricultural and Technical State University is to provide centralized, comprehensive and progressive programs, services and resources designed to prepare students to successfully pursue meaningful career opportunities. Continuous career development assistance is also available to alumni of the University. Individuals who are formally enrolled in a degree program at North Carolina Agricultural and Technical State University or who are A&T graduates are eligible to use the facilities, programs and services of the Office of Career Services. These services include the following:
Student Employment Programs

Cooperative Education Program (Co-op) is an optional, counseling-centered program that offers students the opportunity to alternate periods of academic study with periods of work closely related to their major fields of study. The program is non-compulsory; however, the University urges students to consider co-op a viable alternative to gain work experience before graduation. Students who (1) maintain at least a 2.0 overall grade point average, (2) have completed the freshman year, (3) show intent to matriculate and graduate within a four-to-five year period, and (4) are willing to commit to a mutually agreed upon work schedule are eligible to compete for positions. Transfer and graduate students are also eligible for co-op after completing one semester of successful full-time study. Interested students must be registered with the Office of Career Services and closely match the qualifications requested by the employer. Selections are made by the employer with appropriately weighted consideration given to academic standing, skills and interest in the work to be performed.

While on work assignment, students are considered in good standing with the University; however, they may not be enrolled in courses unless they are applying for academic credit. Participants are expected to work two to three times before they graduate and at least one work period should be scheduled other than a summer session. Students who co-op during the fall or spring semester is assessed an administrative fee by the University, which is due and payable during the semester of work. In addition, students desiring academic credit for assignments must register through their respective academic departments and pay the required tuition. Please contact the Assistant Director of Career Services for Experiential Learning with inquiries and questions.

Part-time employment opportunities are posted as received in the Office of Career Services. These jobs provide local and regional opportunities for students who are interested in supplemental income during the school year. Students are responsible for making the appropriate contacts and following through with prospective employers.

Summer internships offer students the opportunity to gain work experience in industry and government. These positions are offered during the summer and are highly competitive. For companies that do not actively interview during the recruiting season, applications and announcements are available in the Office and online. Opportunities are also available for participation in The Institute of Government and the North Carolina State Government Internship Program. INROADS actively recruits at the University. Interested students must meet the criteria and qualifications established by INROADS and the sponsoring employers.

Permanent Career Options

On-campus Recruitment is available to degree seeking students and alumni of North Carolina Agricultural and Technical State University. Opportunities are available in the local, state, national and international arenas. North Carolina Agricultural and Technical State University observes October 1 though November 30 as the official on-campus recruiting period for the fall semester. During the spring semester, interviews can be scheduled between late January and mid-April. There is no recruiting during the months of May through September nor during the month of December. The Office of Career Services on-campus interview information is available online. Students/Alumni must be registered with the Office of Career Services before they are allowed to interview.

Alumni are eligible to participate in the referral service. They must update their on-line registration each semester. If alumni wish to schedule interviews, they must observe the policy regarding the two business days waiting period.

The Job Listing Service exposes graduating seniors, graduate students and alumni to thousands of job opportunities available nationwide. Job listings are available on-line.

Awareness Programs/Career Fairs

In addition to the recruitment function, the Office of Career Services is actively involved in exposing A&T students to career opportunities and professionals in various career fields. This is accomplished through annual career awareness programs, workshops and information sessions. The annual programs include the following:
Career Awareness Fair is held in September to give students an opportunity to network with more than 200 companies/agencies to find out services/products produced, majors being sought, and opportunities available (permanent, summer, co-op).

Graduate & Professional School Career Day is usually held in the fall semester and allows students an opportunity to broaden their knowledge of post-baccalaureate and postgraduate degrees. This career day is attended by graduate and professional schools from across the United States.

Career Day for Nurses is jointly sponsored by the Office of Career Services at A&T and UNC-G and the Schools of Nursing at A&T and UNC-G. This day provides an opportunity for students to increase their awareness of the types and availability of careers in health services.

Career Day for Teachers is held during the spring semester and is specifically designed to assist education majors. School systems from across the country attend to discuss opportunities in teaching and administration.

N.C. Employers Career Day is set aside for companies/agencies to come to the campus during the spring semester to discuss career opportunities within state government and businesses.

The Career Symposium is held in March and is designed to encourage students, especially freshmen and sophomores, to start critically thinking, learning and using information concerning career related-issues.

The Experiential Career Fair is held the following day after the symposium. This event will provide an opportunity for employers to interact with A&T students of all academic disciplines, exchange information and most importantly explore internship and co-op opportunities.

Additional Services

The Office of Career Services hosts workshops, seminars, counseling sessions, classroom presentations, and information sessions on a regular basis. Representatives of industry also schedule general information sessions the evening before they interview prospective candidates.

Career Resources are available online. Links to companies/agencies Websites can be accessed through Career Services Web Page.

On-line registration and job search information is also available in the office for interested students and alumni. Career Services’ on-line services can be accessed on the Internet at www.careerserv.ncat.edu.

STUDENT ORGANIZATIONS AND ACTIVITIES

http://www.ncat.edu/~studev/

The University provides a well-balanced program of activities for moral, spiritual, cultural and physical development of its students. Religious, cultural, social and recreational activities are sponsored by various committees, departments, and organizations of the University. Outstanding artists, lecturers and dramatic productions are brought to the campus. The Office of the Vice Chancellor publishes a listing of student organizations, their purposes, objectives, chief officers, and advisors annually for Student Development. This document is available upon request by this office located in Murphy Hall Room 102.
MEMORIAL STUDENT UNION
http://www.ncat.edu/~memorial

The Memorial Union functions as the “Community Center” for the University and its constituency by providing a variety of services and activities. The “Union” building encompasses over 60,000 square feet of space and serves as the headquarters for the Student Government Association, the Student Union Advisory Board, Campus Ministries/A&T Fellowship Gospel Choir, Aggie Escort Service, The Yearbook Office, computer lab and the Commuter Student Center. Additionally, the Memorial Student Union offers room accommodations for small group meetings or large banquet activities, lounge areas, self-service vending, the “Aggie Sit-In” food court, a game room, convenience store, and the Information Center.

A primary goal of the Memorial Student Union is to promote an involved community through its various services, facilities, and programs. The Union’s location in the heart of the north campus provides a co-curricular community for students, faculty members, alumni, and guests served by the university. The programming and recreational activities of the Student Union Advisory Board have a unique focus on the cultural and social development of the student community.

Veterans’ Affairs and Disability Support Services

North Carolina A&T State University is an approved University for veterans and veteran dependents who wish to attend and receive educational benefits. Persons wishing to attend the University under the Veterans’ Administration Educational Training Program should apply to the Veterans’ Administration for a Certificate of Eligibility. Simultaneously, they should apply for admission to North Carolina A&T State University through normal admissions procedures. The issuing of a Certificate of Eligibility by the Veterans’ Administration does not automatically assure a student of admission to the University. The student must be admitted (in a non-provisional status on a non-provisional or non-conditional status.) The office is located in the Lower Level, Suite 01 Murphy Hall, and has been established to assist veterans with enrollment and adjustment to college life. Upon enrolling to the University and receiving a Certificate of Eligibility, the veteran and /or dependent should see the University Certifying Official.

Disability Support Services

The Office of Disability Support Services is established to assure ready accessibility of all academic programs, services, and activities to any person with a disability matriculating at the University. Likewise, it focuses on facility accessibility. The Office serves as a liaison for all students with disabilities as they participate in programs and activities enjoyed by all students. Additionally, the office arranges for any needed academic adjustments and/or reasonable accommodations. Current documentation is required and confidential. All information and services for persons with disabilities are handled through this office located in Suite 005, Murphy Hall. Students are encouraged to take advantage of these services.

Minority Affairs

The Office of Minority Student Affairs was created in order to assist minority (Native and Asian American, Caucasian and Hispanic/Latino) students in the development and accomplishment of their educational goals. Housed in Suite 219 of the Memorial Union, Minority Student Affairs is open from 8:00 a.m. to 5:00 p.m. and is staffed by the director and secretary. Minority students represent approximately twelve percent (12%) of the student population. This means about 850 minority students are enrolled at North Carolina Agricultural and Technical State University. Efforts to serve these students are designed to increase the retention and graduation of minority presence students through activities, newsletters, workshops, mentoring programs, surveys, counseling, and numerous program outreach services that focus on personal development and campus involvement. The Minority Student Association offers leadership opportunities and social activities for minority students, often in cooperation with other campus organizations.
Bookstore

The Bookstore is responsible for selling and distributing textbooks, study aids, student supplies, departmental supplies, and souvenirs to the students, faculty, and staff. The bookstore is located in the Brown Hall. The telephone number is 336-334-7593.

STUDENT DEVELOPMENT SERVICES

http://www.ncat.edu/~studev/

The Division of Student Affairs shoulders the major responsibility for Student Development Services. The Vice Chancellor for Student Affairs is the Chief Administrative Officer. The division is comprised of (15) fifteen departments assigned to major units that are supervised by the Executive for Budget Planning and Personnel Services, Executive Director for Student Development, Executive Director for Career Services, Executive Assistant to VC for Student Affairs, Executive Director of Housing, Dean of Students, Director for University Events, Executive Director for Auxiliary Services for Student Affairs, Executive Director for Orientation, First Year Experience and Director for Athletics.

Student Services Units at the University are organized for the purpose of providing programs and services that complement the academic mission of the University and contribute to the intellectual, social, moral, cultural, and physical development of students. These programs and services are designed to meet the expressed out-of-classroom needs of students while they pursue academic careers at the University.

Student Affairs work with students in areas of counseling, leadership development, student housing and student activities, student governance and community service. Such activities assist students in finding “a sense of belonging, responsibility, and achievement.” The Division carries out its purpose through:

1. Providing leadership development opportunities for student leaders, the Student Government Association, the Student Union Advisory Board, the Counsel of Presidents, organizations such as NPHC sororities and fraternities, and service organizations.
2. Providing improved services for students that support their personal and social development.
3. Developing activities and programs that accommodate the special needs of off-campus, non-traditional and other.
4. Providing programs to accommodate the special needs of minority students.

Some of the specific services are described as follows:

COUNSELING SERVICES

http://www.ncat.edu/~counsel

The University makes provisions for counseling, testing and guidance for all students through Counseling Services, located in 108 Murphy Hall.

Counseling Services conducts a testing program for all freshman students. The results of this program are used to assist freshmen in the planning of their educational and vocational careers. The Office conducts other testing programs that are required or desired by the departments of the University.
Counseling Services offers students the opportunity to discuss with a trained professional counselor or clinical psychologist any questions, dilemmas, needs, problems or concerns involving educational, career/vocational, social, personal or emotional adjustments that may occur during their college experience.

The following is a list of services available through Counseling Services:

1. Individual and group personal counseling;
2. Academic and Career Vocational Counseling;
3. Individual test administration and interpretation covering the areas of intelligence, aptitude, personality, interest, achievement and other areas requiring special needs;
4. University Diagnostic and Placement Testing Program for all freshmen to assist in the planning of their educational and vocational careers and other programs required or desired by departments of the University;
5. College Level Examination Program (CLEP) for course credit by examination;
6. National Testing Program, which includes administration of the Medical College Admission Test (MCAT), National League of Nursing Tests and application and information for the Graduate Record Examination, PRAXIS Teacher Examinations, Graduate Management Admission Test, and other similar examinations;
7. Graduate student internship training site;
8. Graduate school information and cooperation in the placement of graduates who desire to pursue graduate studies;
9. Withdrawal Exit Interview; and
10. Outreach counseling programs and activities.

All counseling is voluntary, free of charge, private and confidential.
DRUG AND ALCOHOL EDUCATION POLICY

Preamble:

The basic mission of North Carolina Agricultural and Technical State University is to provide an educational environment that enhances and supports the intellectual process. The academic community, including students, faculty and staff has the collective responsibility to ensure that this environment is conducive to healthy intellectual growth. The illegal use of harmful and addictive chemical substances and the abuse of alcohol pose a threat to the educational environment. Thus, this Drug and Alcohol Education Policy is being applied to assist members of the University community in their understanding of the harmful effects of illegal drugs and alcohol abuse; of the incompatibility of illegal drugs and the abuse of alcohol with the educational mission of the University; and of the consequences of the use, possession or sale of such illegal drugs and the abuse of alcohol, including the violation of applicable laws.

Objectives:

I. To develop an educational program that increases the University community’s knowledge and competency to make informed decisions relative to the use and abuse of controlled substances and alcohol; and
II. To increase those skills and attributes required taking corrective action conducive to the health and well being of potential drug and alcohol abusers.

Program Components:

There are five (5) components to this policy:

I. Education
II. Health Risks
III. Rehabilitation
IV. Sanctions
V. Dissemination and Review

I. EDUCATION

It is the intent of the Drug and Alcohol Education Policy of North Carolina Agricultural and Technical State University to insure that all members of the University community (i.e. students, faculty, administrators and other employees) are aware that the use, sale and/or possession of illegal drugs and the abuse of alcohol are incompatible with the goals of the University. Moreover, each person should be aware that the use, sale or possession of illegal drugs and the abuse of alcohol are, as more specifically set forth later in this policy, subject to specific sanctions and penalties.

All members of the University family are reminded that in addition to being subject to University regulations and sanctions regarding illegal drugs and the abuse of alcohol, they are also subject to the laws of the state and of the nation. Each individual is also reminded that it is not a violation of “double jeopardy” to be subject to the terms of this policy as well as the provisions of the North Carolina General Statutes. For a listing of relevant state criminal statutes, please see Appendix A. Further questions may be directed to the Office of the University Attorney or the Office of Student Affairs.

Each member of the University community is asked to pay particular attention to the full consequences of the sanctions specified in this policy as well as the consequences of the North Carolina criminal law referenced above. Certain violations may jeopardize an individual’s future as it relates to continued University enrollment or future employment possibilities, depending on individual circumstances.

Further, it is a policy of the University that the educational, legal and medical aspects of this issue be emphasized on an annual basis through the provision of programs and activities in the following areas:
a. Annual Drug and Alcohol Education Week - Workshops and seminars on drug abuse led by former drug addicts and community agencies such as MADD, SADD, and the Sycamore Center;
b. Drug and Alcohol Awareness Fair - Exhibits featuring drug and alcohol related paraphernalia;
c. Media presentations on the University radio station, WNAA, emphasizing the most current programs with drug and alcohol education messages;
d. “Home for the Holidays, Don’t Drink and Drive”; Drug and Alcohol Abuse Prevention Campaign;
e. Publication of brochure on drug education;
f. Continuous monthly outreach programs in each residence hall.

Although directed primarily to the student population, the above noted educational programs shall also open to participation by all categories of University employees.

Additionally, the Staff Development Office is the designated University department responsible for the planning and implementation of drug and alcohol education programs geared toward the special needs of the faculty and staff. Among the programs to be implemented by the Staff Development Office are lunchtime seminars jointly conducted by the Sycamore Center, the Greensboro Police Department and the Guilford County Mental Health Department.

II. HEALTH RISKS

Health risks, associated with the use of illicit drugs and the abuse of alcohol, are wide ranging and varied depending on the specific substance involved and individual abuse pattern. These risks include, but are not limited to:

1. Physical changes which alter bodily functions such as severely increased or decreased cardiac output; shallow to irregular respiration; and damage to other major organs, such as kidney, liver and brain;
2. Emotional and psychological changes including paranoia, depression, hostility, anxiety, mood swings and instability;
3. Additional health risks could include such illnesses as AIDS HIV infection, sexually transmitted diseases, severe weight loss, cancer, cirrhosis, hepatitis, short-term memory loss, seizures, and deformities to unborn children;
4. Physical and psychological dependency (addiction); and
5. Death from overdose or continuous use.

While these health risks are broad in range, persons consuming illicit drugs and alcohol will exemplify some, if not all, of the above symptoms. See Appendix A for a list of a few specific drugs and their corresponding health risks.

III. REHABILITATION

The University recognizes that rehabilitation is an integral part of an effective drug and alcohol policy. Consistent with its commitment in the areas of education and sanctions, it is the University’s intent to provide an opportunity for rehabilitation to all members of the University family. This commitment is evidenced through access to existing University resources and is furthered by referrals to community agencies.

Students:
The University Counseling Center and the Student Health Center are available to provide medical and psychological assessments of students with drug/alcohol dependency and drug/alcohol abuse problems. Based on the outcome of this assessment, treatment can be provided by either or both of these centers. If, however, the scope of the problem is beyond the capability of these Centers, affected students will be referred to community agencies, such as the Guilford County Mental Health Center and Greenpoint. The cost of such services shall be the individual’s responsibility.

Employees:
Referrals to local community agencies will be made available to include the Guilford County Mental Health Center, Greenpoint and private physicians. The cost of such services will be the individual’s responsibility. The services of the University’s Counseling and Health Centers are not normally utilized by faculty and staff members except in emergency situations.
IV. SANCTIONS

A. Illegal Drugs/Prohibited Conduct

All members of the University community have the responsibility for being knowledgeable about and in compliance with the provisions of North Carolina law as it relates to the use, possession or sale of illegal drugs as set forth in Article 5, Chapter 90 of the North Carolina General Statutes. Any violations of this law by members of the university family subjects the individual to prosecution both by University disciplinary proceedings and by civil authorities. It is not a violation of “double jeopardy” to be prosecuted by both of these authorities. The University will initiate its own disciplinary proceedings against a student, faculty member, administrator or other employee when the alleged conduct is deemed to affect the interests of the University.

Penalties will be imposed by the University in compliance with procedural safeguards applicable to disciplinary actions against students (see the Student Handbook), faculty members (see the Faculty Handbook), administrators (see the Board of Governors Policies Concerning Senior Administrative Officers as well as the EPA Non-Teaching Personnel Policies) and SPA employees (see State Personnel Commission Policies).

The penalties imposed for such violations range from written warnings with probationary status to expulsion from enrollment and discharges from employment. However, minimum penalties that apply for each violation are listed in Appendix A. For additional information, direct questions to the Office of the University Attorney or the Office of Student Affairs. It should be noted that where the relevant sanction dictates a minimum of one semester suspension from employment, the regulations of the State Personnel Commission (as pertaining to SPA employees) do not permit suspension from employment of this duration. Thus, such sanction as applied to SPA employees dictates the termination of employment.

B. Alcohol/Prohibited Conduct

1. Employees:

While the sale, possession, or consumption of alcoholic beverages is not illegal under state or federal law, it is, hereby, the policy of North Carolina Agricultural and Technical State University that the consumption of alcohol sufficient to interfere with or prohibit the otherwise normal execution of job responsibilities is improper and subjects the employee to appropriate disciplinary procedures. It is also the policy of North Carolina Agricultural and Technical State University that alcoholic beverages not sold on campus. Employees violating the above noted policies are subject to appropriate disciplinary procedures, which range from warning and probation to dismissal consistent with the individual circumstances.

Similarly, employees are reminded that, under N.C. law, it is illegal to sell or give malt beverages, unfortified wine, fortified wine, spirituous liquor or mixed beverages to anyone less than 21 years old. It is also illegal to aid and abet any person less than 21 years old in the purchase or possession of the alcoholic beverages noted above. Employees found violating these state laws are subject to legal sanction as well as the appropriate disciplinary procedures.

2. Students:

Students are reminded of the following University regulations and state laws regarding alcoholic beverages as contained in the Student Handbook:

1. Students are liable for violation of State Law GS 18B-302 while on University premises: 18B-302 Sale to or Purchase by Underage Persons
 a. Sale – It shall be unlawful for any person to:

 I. Sell or give malt beverages or unfortified wine to anyone less than 21 years old; or
 II. Sell or give fortified wine, spirituous liquor, or mixed beverages to anyone less than 21 years old.

 b. Purchase or Possession - It shall be unlawful for:

 I. A person less than 21 years old to purchase, to attempt to purchase, or to possess malt beverages or unfortified wine; or
II. A person less than 21 years old to purchase, to attempt to purchase, or possess fortified wine, spirituous liquor, or mixed beverages.

c. Aider and Abettor

I. By Underage Person - Any person under the lawful age to purchase and who aids or abets another in violation of subsection (a) or (b) of this section shall be guilty of a misdemeanor punishable by a fine of up to five hundred dollars ($500.00) or imprisonment for not more than six months, or both, at the discretion of the court.

II. By Person over Lawful Age - Any person who is over the lawful age to purchase and who aids or abets another in violation of subsection (a) or (b) of this section shall be guilty of a misdemeanor punishable by a fine of up to two thousand dollars ($2,000) or imprisonment for not more than two years, or both, at the discretion of the court.

1. Students are responsible for conforming to state laws pertaining to:

 a. Transportation of alcoholic beverages
 b. Consumption of alcoholic beverages in public places
 c. Consumption of alcoholic beverages by students under the legal age
 d. Abuses of alcoholic beverages

2. There will be no consumption of alcoholic beverages in a motor vehicle while on University property or on University streets.

3. Personal consumption of alcoholic beverages is restricted to students’ rooms in residence halls, if they are of legal drinking age.

4. The possession or consumption of alcoholic beverages shall not be permitted in public places, such as lounges, game rooms, study rooms, kitchens, laundries or patios.

5. There will be no public display of alcoholic beverages.

 The University discourages the drinking of alcoholic beverages, and other abuses of alcoholic beverages.

6. Being under the influence of alcohol is considered a breach of conduct, and students who violate these standards are subject to disciplinary action.

 Violations of the above regulations and laws will subject students to criminal prosecution as well as campus-based charges.

C. Suspension Pending Final Disposition

The University reserves the right through the Chancellor or his designee to suspend a student, faculty member, administrator and other employee between the time of the initiation of charges and the hearing to be held. Such decision will be made based on whether the person’s continued presence within the University community will constitute a clear and immediate danger or disruption to the University. In such circumstances the hearing will be held as promptly as possible.

V. DISSEMINATION

A copy of the Drug and Alcohol Education Policy will be distributed on an annual basis to each employee and student of the University. The distribution to all enrolled students will occur as a part of the registration process. The University Personnel Office will administer the distribution to University employees.

The Chancellor of the University shall insure on a biennial basis that this policy is reviewed for purposes of assessing its effectiveness, consistency of application of sanctions and to determine the necessity for modification. This review shall be conducted by October 15 of every other year, beginning in 1992.

CONCLUSION
North Carolina Agricultural and Technical State University recognizes that the use of illegal drugs and the abuse of alcohol are a national problem and that sustained efforts must be made to educate the University family regarding the consequences associated with drug and alcohol abuse. The primary emphasis in this policy has therefore been on providing drug and alcohol abuse counseling and rehabilitation services through the various programs and activities outlined above.

Past experience suggests that most members of the University family are law abiding and will use this policy as a guide for their future behaviors and as a mechanism to influence their peers and colleagues in a positive direction. However, those who choose to violate any portions of this policy will pay the penalty for non-compliance. The main thrust of this policy has been to achieve a balance between its educational and punitive components.

The effective implementation of this policy rests on its wide dissemination to all members of the University family. This will be accomplished by the dissemination procedure previously outlined and through its publication in the Faculty Handbook, Student Handbook and University Catalogue. All affected individuals can be assured that applicable professional standards of confidentiality will be maintained at all times.
INDEX
A
Academic Dishonesty.
Academic Progress.
Accreditation.
Administration, North Carolina A&T State University.
Administration, University of North Carolina.
Admission to Candidacy.
Adult Education.
Aggie Pride Compact.
Agribusiness, Applied Economics.
Agricultural Education.
Animal Sciences.
Application Material.
Architectural Engineering.
Assistantship.
Audit.
Auditing.
B
Bioenvironmental Engineering.
Biology.
Biology, Secondary Education.
Board of Governors.
Board of Trustees.
Bookstore.
Candidacy.
Career Services.
Change of Grade.
Change of Name and Address.
Changing Programs.
Chemical Engineering.
Chemistry.
Chemistry, Secondary Education.
Civil and Environmental Engineering.
Class Attendance.
Code of Student Conduct.
Colleges, Schools, and Divisions.
Comprehensive Final Oral Examinations.
Computer Science.
Construction Management.
Continuing Studies.
Continuous Registration.
Counseling Services.
Counselor Education.
Course Levels.
Course Load.
Credits.
Curriculum and Instruction.
D
Deans of Colleges and Schools.
Declaration of Major.
Development and University Relations.
Disability Support Services.
Dissertation Submission.
Doctor of Philosophy Degree.
Doctoral Program with Indiana.